Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

J. Moreno Molina, J. Haase, and C. Grimm. “Energy consumption estimation and profiling in wireless sensor networks. In ARCS ’10 - 23th International Conference on Architecture of Computing Systens 2010 Workshop Proceedings, pages 259–264, Feb. 2010.

has been cited by the following article:

  • TITLE: Low Power Transceiver Design Parameters for Wireless Sensor Networks

    AUTHORS: Adinya John Odey, Daoliang Li

    KEYWORDS: Transceiver Design Parameters; Low Power Wireless Sensor Networks; Energy Model

    JOURNAL NAME: Wireless Sensor Network, Vol.4 No.10, October 30, 2012

    ABSTRACT: Designing low power sensor networks has been the general goal of design engineers, scientist and end users. It is desired to have a wireless sensor network (WSN) that will run on little power (if possible, none at all) thereby saving cost, and the inconveniences of having to replace batteries in some difficult to access areas of usage. Previous researches on WSN energy models have focused less on the aggregate transceiver energy consumption models as compared to studies on other components of the node, hence a large portion of energy in a WSN still get depleted through data transmission. By studying the energy consumption map of the transceiver of a WSN node in different states and within state transitions, we propose in this paper the energy consumption model of the transceiver unit of a typical sensor node and the transceiver design parameters that significantly influences this energy consumption. The contribution of this paper is an innovative energy consumption model based on simple finite automata which reveals the relationship between the aggregate energy consumption and important power parameters that characterize the energy consumption map of the transceiver in a WSN; an ideal tool to design low power WSN.