Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


J. A. Marengo, T. Ambrizzi, G. Kiladis and B. Liebmann, “Upper-Air Wave Trains over the Pacific Ocean and Wintertime Cold Surges in Tropical-Subtropical South America Leading the Freezes in Southern and Southeastern Brazil,” Theoretical and Applied Climatology, Vol. 73, No. 3-4, 2002, pp. 223-242. doi:10.1007/s00704-001-0669-x

has been cited by the following article:

  • TITLE: Climate Fields over South America and Variability of SACZ and PSA in HadGEM2-ES

    AUTHORS: Iracema Fonseca Albuquerque Cavalcanti, Marilia Harumi Shimizu

    KEYWORDS: South America Precipitation; HadGEM2-ES; Model Simulation; Model Projections; SACZ; PSA

    JOURNAL NAME: American Journal of Climate Change, Vol.1 No.3, September 20, 2012

    ABSTRACT: Historical simulations (present climate) and projections under RCP8.5 scenario (future climate) by HadGEM2-ES of temperature and precipitation are analyzed during the four seasons in South America. Projections of precipitation are discussed in terms of atmospheric circulation. The South Atlantic Convergence Zone (SACZ) and the Pacific South America (PSA) patterns are analyzed in simulations of present climate and in future climate projections. The model shows small systematic errors over South America, larger close to the northern South American coast in DJF and MAM. The seasonal variability of precipitation, temperature and wind fields is very well reproduced, mainly the summer/winter differences. The SACZ and the Intertropical Convergence Zone (ITCZ) are well simulated. The good model performance to reproduce the precipitation, temperature and wind fields, in the present climate, gives confidence in the projection results subject to the future scenarios. Changes from the present time to the future indicate increased precipitation over southern and southeastern Brazil and areas nearby and the tropical western South American coast. Reduced precipitation is projected over eastern Amazonia, northern South America and southern Chile. The changes are related to changes in the low level wind flow over the tropical North Atlantic, which reduces the advection of moisture to the continent and also to the increased low level flow over central South America southwards, which increases the humidity in the southern regions. The upper level flow changes are also consistent with the precipitation changes. There is a weakening of the Bolivian High and a strengthening of the subtropical jet over the continent. The SACZ dipole pattern is well simulated and in the future projections the southern center anomalies are more intense than in the present time. The PSA1 and PSA2 patterns are well represented in the present climate, but in the future projection only one dominant mode is identified as the typical teleconnection over the Pacific and South America.