Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

F. G. Rammerstorfer, K. Scharf, F. D. Fischer and R. Seeber, “Collapse of Earthquake Excited Tanks,” Journal of Mechanical Research, Vol. 25, No. 2, 1988, pp. 129143.

has been cited by the following article:

  • TITLE: The Vibration of Partially Filled Cylindrical Tank Subjected to Variable Acceleration

    AUTHORS: Omar Badran, Mohamed S. Gaith, Ali Al-Solihat

    KEYWORDS: Moving Tanks; Sloshing; Natural Frequencies; Dynamic Response; Variable Moment of Inertia

    JOURNAL NAME: Engineering, Vol.4 No.9, September 28, 2012

    ABSTRACT: In this study, the vibration of a cylindrical tank partially filled with liquid under motion modeled as mass lumped is investigated. A three-dimensional quasi-static model of a partially-filled tank of circular cross-section is developed and integrated into a comprehensive three-dimensional vehicle model to study its dynamic performance as a function of acceleration, and the fill volume. The liquid load movement occurring in the roll and pitch planes of the tank is derived as a function of the longitudinal acceleration, and then the corresponding shifted load is expressed in terms of center of mass coordinates and mass moments of inertia of the liquid bulk, assuming negligible influence of fundamental slosh frequency and viscous effects. The vibration characteristics of the partially filled tank vehicle are evaluated in terms of load shift, forces and moments induced by the cargo movement, and dynamic load transfer in the longitudinal direction. The semi analytical response is obtained by means of SimuLink? Matlab Software. The effects of longitudinal acceleration of the tank system on the liquid surface inclination and consequently shifting of centroids and moment of inertia are illustrated.