Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
S. Y. Cheng, J. Z. LI, Q. Q. Ren and L. Yu, “Bernoulli Sampling Based (epsilon, delta)-Approximate Aggregation in Larger-Scale Sensor Networks,” IEEE International Conference on Computer Communications, California, 2010, pp. 1181-1189.
has been cited by the following article:
TITLE: Approximate Continuous Aggregation via Time Window Based Compression and Sampling in WSNs
AUTHORS: Lei Yu, Jianzhong Li, Siyao Cheng
KEYWORDS: Approximate Aggregation, Continuous Aggregation, Sampling, Sensor Network
JOURNAL NAME: Wireless Sensor Network, Vol.2 No.9, September 30, 2010
ABSTRACT: In many applications continuous aggregation of sensed data is usually required. The existing aggregation schemes usually compute every aggregation result in a continuous aggregation either by a complete aggregation procedure or by partial data update at each epoch. To further reduce the energy cost, we propose a sampling-based approach with time window based linear regression for approximate continuous aggregation. We analyze the approximation error of the aggregation results and discuss the determinations of parameters in our approach. Simulation results verify the effectiveness of our approach.
Related Articles:
A Genetic Based Fuzzy Q-Learning Flow Controller for High-Speed Networks
Xin LI, Yuanwei JING, Nan JIANG, Siying ZHANG
DOI: 10.4236/ijcns.2009.21010 5,042 Downloads 8,883 Views Citations
Pub. Date: February 26, 2009
Q Learning with Quantum Neural Networks
Wei Hu, James Hu
DOI: 10.4236/ns.2019.111005 1,313 Downloads 2,273 Views Citations
Pub. Date: January 24, 2019
A Tree Based Data Aggregation Scheme for Wireless Sensor Networks Using GA
Ali Norouzi, Faezeh Sadat Babamir, Zeynep Orman
DOI: 10.4236/wsn.2012.48028 4,852 Downloads 8,712 Views Citations
Pub. Date: August 29, 2012
Priority-Based CCA Periods for Efficient and Reliable Communications in Wireless Sensor Networks
Mounib Khanafer, Mouhcine Guennoun, Hussein T. Mouftah
DOI: 10.4236/wsn.2012.42007 3,844 Downloads 7,020 Views Citations
Pub. Date: February 23, 2012
AEESPAN: Automata Based Energy Efficient Spanning Tree for Data Aggregation in Wireless Sensor Networks
Zahra ESKANDARI, Mohammad Hossien YAGHMAEE
DOI: 10.4236/wsn.2009.14039 6,173 Downloads 10,713 Views Citations
Pub. Date: November 20, 2009