Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
S. Wiggins, “Global Bifurcation and Chaos,” SpringerVerlag, New York, 1988. doi:10.1007/978-1-4612-1042-9
has been cited by the following article:
TITLE: An Approach for the Construction of Systems That Self-Generate Chaotic Solitons
AUTHORS: Baoying Chen
KEYWORDS: Chaotic Solitons; Partial Differential Equation; Homoclinic Orbit
JOURNAL NAME: Applied Mathematics, Vol.3 No.7, June 19, 2012
ABSTRACT: This paper proposes a method for constructing partial differential equation (PDE) systems with chaotic solitons by using truncated normal forms of an ordinary differential equation (ODE). The construction is based mainly on the fact that the existence of a soliton in a PDE system is equal to that of a homoclinic orbit in a related ODE system, and that chaos of ?i’lnikov homoclinic type in the ODE imply that the soliton in the PDE changes its profile chaotically along propagation direction. It is guaranteed that the constructed systems can self-generate chaotic solitons without any external perturbation but with constrained wave velocities in a rigorously mathematical sense.
Related Articles:
Bifurcation of Parameter-Space and Chaos in Mira 2 Map
Tao Jiang, Zhiyang Yang
DOI: 10.4236/jamp.2017.59160 515 Downloads 745 Views Citations
Pub. Date: October 16, 2017
Bifurcation and Chaos in a Parasitoid-Host-Parasitoid Model
Xijuan Liu, Yun Liu
DOI: 10.4236/ijmnta.2018.71001 614 Downloads 939 Views Citations
Pub. Date: March 8, 2018
Colonial Houses and Cultural Identity in New York State’s Mohawk River Valley
Scott Stull, Michael Rogers, Kevin Hurley
DOI: 10.4236/ad.2014.22003 3,977 Downloads 8,336 Views Citations
Pub. Date: March 25, 2014
Study on Bifurcation and Chaos in Boost Converter Based on Energy Balance Model
Quanmin NIU, Zhizhong JU
DOI: 10.4236/epe.2009.11006 5,514 Downloads 9,625 Views Citations
Pub. Date: August 18, 2009
Bifurcation and Chaos of Gear Pair System Supported by Long Journal Bearings Based on Turbulent Flow Effect and Nonlinear Suspension Effect
Cai-Wan Chang-Jian
DOI: 10.4236/wjm.2013.36029 4,675 Downloads 6,786 Views Citations
Pub. Date: September 12, 2013