Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
A. Arneodo, et al., “Asymptotic Chaos,” Physica D: Nonlinear Phenomena, Vol. 14, No. 3, 1985, pp. 327-347. doi:10.1016/0167-2789(85)90093-4
has been cited by the following article:
TITLE: An Approach for the Construction of Systems That Self-Generate Chaotic Solitons
AUTHORS: Baoying Chen
KEYWORDS: Chaotic Solitons; Partial Differential Equation; Homoclinic Orbit
JOURNAL NAME: Applied Mathematics, Vol.3 No.7, June 19, 2012
ABSTRACT: This paper proposes a method for constructing partial differential equation (PDE) systems with chaotic solitons by using truncated normal forms of an ordinary differential equation (ODE). The construction is based mainly on the fact that the existence of a soliton in a PDE system is equal to that of a homoclinic orbit in a related ODE system, and that chaos of ?i’lnikov homoclinic type in the ODE imply that the soliton in the PDE changes its profile chaotically along propagation direction. It is guaranteed that the constructed systems can self-generate chaotic solitons without any external perturbation but with constrained wave velocities in a rigorously mathematical sense.
Related Articles:
Criteria for Instability and Chaos in Nonlinear Systems
Evgeny Nikolaevich Perevoznikov, Henry Evgenievich Skvortsov
DOI: 10.4236/jamp.2018.62036 540 Downloads 951 Views Citations
Pub. Date: February 23, 2018
Comment on the Paper “Condom-Assisted Transurethral Resection: A New Surgical Technique for Urethral Tumor”, Surgical Science, Vol. 1, 2010, pp. 46-48
Guven Aslan
DOI: 10.4236/ss.2011.24042 4,509 Downloads 7,424 Views Citations
Pub. Date: June 23, 2011
Erratum to “The Faraday Isolator, Detailed Balance and the Second Law” [Journal of Applied Mathematics and Physics, Vol. 5, No. 4, April 2017 PP. 889-899]
George S. Levy
DOI: 10.4236/jamp.2017.58127 1,427 Downloads 2,724 Views Citations
Pub. Date: August 25, 2017
Classical Chaos on Double Nonlinear Resonances in Diatomic Molecules
G. V. López, A. P. Mercado
DOI: 10.4236/jmp.2015.64054 3,612 Downloads 4,086 Views Citations
Pub. Date: March 27, 2015
Exact Solutions for a Class of Nonlinear PDE with Variable Coefficients Using ET and ETEM
Shifei Sun, Lina Chang, Hanze Liu
DOI: 10.4236/jamp.2019.711183 196 Downloads 353 Views Citations
Pub. Date: November 5, 2019