Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
C. L. Zheng, “Coherent Soliton Structures with Chaotic and Fractal Behaviors in a Generalized (2+1)-Dimensional Korteweg de-Vries System,” Chinese Journal of Physics, Vol. 41, 2003, pp. 442-456.
has been cited by the following article:
TITLE: An Approach for the Construction of Systems That Self-Generate Chaotic Solitons
AUTHORS: Baoying Chen
KEYWORDS: Chaotic Solitons; Partial Differential Equation; Homoclinic Orbit
JOURNAL NAME: Applied Mathematics, Vol.3 No.7, June 19, 2012
ABSTRACT: This paper proposes a method for constructing partial differential equation (PDE) systems with chaotic solitons by using truncated normal forms of an ordinary differential equation (ODE). The construction is based mainly on the fact that the existence of a soliton in a PDE system is equal to that of a homoclinic orbit in a related ODE system, and that chaos of ?i’lnikov homoclinic type in the ODE imply that the soliton in the PDE changes its profile chaotically along propagation direction. It is guaranteed that the constructed systems can self-generate chaotic solitons without any external perturbation but with constrained wave velocities in a rigorously mathematical sense.
Related Articles:
Exact Solution and Conservation Laws for Fifth-Order Korteweg-de Vries Equation
Elham M. Al-Ali
DOI: 10.4236/jamp.2013.15007 4,339 Downloads 7,120 Views Citations
Pub. Date: October 22, 2013
Martingale Solution to Stochastic Extended Korteweg-de Vries Equation
Anna Karczewska, Maciej Szczeciński
DOI: 10.4236/apm.2018.812053 350 Downloads 578 Views Citations
Pub. Date: December 26, 2018
Travelling Solitary Wave Solutions to Higher Order Korteweg-de Vries Equation
Chunhuan Xiang, Honglei Wang
DOI: 10.4236/ojapps.2019.95029 514 Downloads 986 Views Citations
Pub. Date: May 23, 2019
Analytical and Numerical Computations of Multi-Solitons in the Korteweg-de Vries (KdV) Equation
Hycienth O. Orapine, Emem Ayankop-Andi, Godwin J. Ibeh
DOI: 10.4236/am.2020.117037 230 Downloads 523 Views Citations
Pub. Date: July 9, 2020
Discrete Singular Convolution Method for Numerical Solutions of Fifth Order Korteweg-De Vries Equations
Edson Pindza, Eben Maré
DOI: 10.4236/jamp.2013.17002 3,801 Downloads 6,621 Views Citations
Pub. Date: December 12, 2013