Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
F. Benvenuto, et al., “Manifestations of Classical and Quantum Chaos in Nonlinear Wave Propagation,” Physical Review A, Vol. 44, No. 6, 1991, R3423. doi:10.1103/PhysRevA.44.R3423
has been cited by the following article:
TITLE: An Approach for the Construction of Systems That Self-Generate Chaotic Solitons
AUTHORS: Baoying Chen
KEYWORDS: Chaotic Solitons; Partial Differential Equation; Homoclinic Orbit
JOURNAL NAME: Applied Mathematics, Vol.3 No.7, June 19, 2012
ABSTRACT: This paper proposes a method for constructing partial differential equation (PDE) systems with chaotic solitons by using truncated normal forms of an ordinary differential equation (ODE). The construction is based mainly on the fact that the existence of a soliton in a PDE system is equal to that of a homoclinic orbit in a related ODE system, and that chaos of ?i’lnikov homoclinic type in the ODE imply that the soliton in the PDE changes its profile chaotically along propagation direction. It is guaranteed that the constructed systems can self-generate chaotic solitons without any external perturbation but with constrained wave velocities in a rigorously mathematical sense.
Related Articles:
The wave-corpuscle properties of microscopic particlesin the nonlinear quantum-mechanical systems
Xiao-feng Pang
DOI: 10.4236/ns.2011.37083 5,419 Downloads 9,630 Views Citations
Pub. Date: July 29, 2011
Wave Functions, Creation and Annihilation Operators of Quantum Physical System
Malkhaz Mumladze
DOI: 10.4236/oalib.1105166 221 Downloads 330 Views Citations
Pub. Date: January 22, 2019
Equivalence of String Classical and Quantum Energy beside Equivalence of Wave Packet and Relativistic Velocity in Eucleadian and Curved Space
Mashair Ahmed Mohammed Yousif, Abeer Mohammed Khairy Ahmed, Zainab Mustapha Kurawa, Omer A. M. Elnor, Mubarak Dirar Abd-Alla Yagoub, Ibrahim Mohammed Elfaki El-Tahir, Mohammed Idriss Ahmed, Zoalnoon Ahmed Abeid Allah Saad
DOI: 10.4236/ns.2020.127041 87 Downloads 198 Views Citations
Pub. Date: July 23, 2020
Criteria for Instability and Chaos in Nonlinear Systems
Evgeny Nikolaevich Perevoznikov, Henry Evgenievich Skvortsov
DOI: 10.4236/jamp.2018.62036 541 Downloads 953 Views Citations
Pub. Date: February 23, 2018
Wave Propagation in Nanocomposite Materials
Pierre Hillion
DOI: 10.4236/jemaa.2010.27053 5,161 Downloads 8,731 Views Citations
Pub. Date: July 30, 2010