Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
S. V. Dmitriev and T. Shigenari, “Short-Lived TwoSoliton Bound States in Weakly Perturbed Nonlinear Schr?dinger Equation,” Chaos, Vol. 12, No. 2, 2002, pp. 324-332. doi:10.1063/1.1476951
has been cited by the following article:
TITLE: An Approach for the Construction of Systems That Self-Generate Chaotic Solitons
AUTHORS: Baoying Chen
KEYWORDS: Chaotic Solitons; Partial Differential Equation; Homoclinic Orbit
JOURNAL NAME: Applied Mathematics, Vol.3 No.7, June 19, 2012
ABSTRACT: This paper proposes a method for constructing partial differential equation (PDE) systems with chaotic solitons by using truncated normal forms of an ordinary differential equation (ODE). The construction is based mainly on the fact that the existence of a soliton in a PDE system is equal to that of a homoclinic orbit in a related ODE system, and that chaos of ?i’lnikov homoclinic type in the ODE imply that the soliton in the PDE changes its profile chaotically along propagation direction. It is guaranteed that the constructed systems can self-generate chaotic solitons without any external perturbation but with constrained wave velocities in a rigorously mathematical sense.
Related Articles:
Are Mispricings Long-Lasting or Short-Lived? Evidence from S & P 500 Index ETF Options
Feng Jiao
DOI: 10.4236/tel.2018.83027 496 Downloads 935 Views Citations
Pub. Date: February 12, 2018
Chaos, Mixing, Weakly Mixing and Exactness
Mohammed Nokhas Murad Kaki
DOI: 10.4236/oalib.1103773 318 Downloads 533 Views Citations
Pub. Date: June 26, 2018
Some Criteria for the Asymptotic Behavior of a Certain Second Order Nonlinear Perturbed Differential Equation
Aydin Tiryaki
DOI: 10.4236/apm.2012.25048 2,744 Downloads 5,089 Views Citations
Pub. Date: September 26, 2012
Exact Solution of Dirac Equation with Charged Harmonic Oscillator in Electric Field: Bound States
Sameer M. Ikhdair
DOI: 10.4236/jmp.2012.32023 6,910 Downloads 15,352 Views Citations
Pub. Date: February 29, 2012
Ground States of Nonlinear Schrödinger-Kirchhoff Type Equation
Weidan Li
DOI: 10.4236/jamp.2020.82025 184 Downloads 354 Views Citations
Pub. Date: February 13, 2020