Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

M. Kendall and J. D. Gibbons, “Rank Correlation Methods,” Oxford University Press, New York, 1990.

has been cited by the following article:

  • TITLE: VATdt: Visual Assessment of Cluster Tendency Using Diagonal Tracing

    AUTHORS: Yingkang Hu

    KEYWORDS: Clustering; Dissimilarity Measures; Data Visualization; Clustering Tendency

    JOURNAL NAME: American Journal of Computational Mathematics, Vol.2 No.1, March 21, 2012

    ABSTRACT: The visual assessment of tendency (VAT) technique, for visually finding the number of meaningful clusters in data, developed by J. C. Bezdek, R. J. Hathaway and J. M. Huband, is very useful, but there is room for improvements. Instead of displaying the ordered dissimilarity matrix (ODM) as a 2D gray-level image for human interpretation as is done by VAT, we trace the changes in dissimilarities along the diagonal of the ODM. This changes the 2D data structure (matrices) into 1D arrays, displayed as what we call the tendency curves, which enables one to concentrate only on one variable, namely the height. One of these curves, called the d-curve, clearly shows the existence of cluster structure as patterns in peaks and valleys, which can be caught not only by human eyes but also by the computer. Our numerical experiments showed that the computer can catch cluster structures from the d-curve even in some cases where the human eyes see no structure from the visual outputs of VAT. And success on all numerical experiments was obtained us- ing the same (fixed) set of program parameter values.