Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


S. F. A. Halim, A. H. Kamaruddin and W. J. N. Fernando, “Continuous Biosynthesis of Biodiesel from Waste Cooking Palm Oil in a Packed Bed Reactor: Optimization Using Response Surface Methodology (RSM) and Mass Transfer Studies,” Bioresource Technology, Vol. 100, 2009, pp. 710-716. doi:10.1016/j.biortech.2008.07.031

has been cited by the following article:

  • TITLE: Evaluation of Activation Energy and Thermodynamic Properties of Enzyme-Catalysed Transesterification Reactions

    AUTHORS: Ravindra Pogaku, Jegannathan Kenthorai Raman, Gujjula Ravikumar

    KEYWORDS: Activation Energy; Thermodynamic Properties

    JOURNAL NAME: Advances in Chemical Engineering and Science, Vol.2 No.1, December 31, 2011

    ABSTRACT: In this study, the activation energy and thermodynamic properties of immobilized enzyme catalysed transesterification reactions were evaluated based on the enzyme substrate transition theory. The activation energy for a enzyme catalysed biodiesel production system were found to be 4.25 (kcal/mole) for monoglyceride formation, 5.58(kcal/mole) for diglyceride formation and 5.50 (kcal/mole) for methyl ester formation respectively. The rate constants were found to be 3.2 × 1010(L/mol.sec) monoglyceride, 3.47 × 109 (L/mol.sec) for diglyceride and 3.93 × 109 (L/mol.sec) for methyl ester. Based on the present work and published literatures, the activation energy of enzyme-catalysed transesterification reactions were found to be lower than the chemical-catalysed and non-catalyzed transesterification reactions. The thermodynamic properties of immobilized enzyme-catalysed transesterification reaction were found to be Gibbs free energy (ΔG = –1.02 kcal/mol), enthalpy (ΔH = 544 cal/mol) and entropy (ΔS = 5.19 cal/Kmol).