Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
E.C. Sherbrooke and N. M. Patrikalakis, “Computation of the Solutions of Nonlinear Polynomial Systems,” Computer Aided Geometric Design, Vol. 10, No. 5, 1993, pp. 379-405. doi:10.1016/0167-8396(93)90019-Y
has been cited by the following article:
TITLE: Minimax Multivariate Control Chart Using a Polynomial Function
AUTHORS: Johnson Ademola Adewara, Kayode Samuel Adekeye, Osebekwin Ebenezer Asiribo, Samuel Babatope Adejuyigbe
KEYWORDS: Minimax, Non-Linear Polynomial, Process, Maximum and Minimum
JOURNAL NAME: Applied Mathematics, Vol.2 No.12, December 27, 2011
ABSTRACT: Minimax control chart uses the joint probability distribution of the maximum and minimum standardized sample means to obtain the control limits for monitoring purpose. However, the derivation of the joint probability distribution needed to obtain the minimax control limits is complex. In this paper the multivariate normal distribution is integrated numerically using Simpson’s one third rule to obtain a non-linear polynomial (NLP) function. This NLP function is then substituted and solved numerically using Newton Raphson method to obtain the control limits for the minimax control chart. The approach helps to overcome the problem of obtaining the joint probability distribution needed for estimating the control limits of both the maximum and the minimum statistic for monitoring multivariate process.
Related Articles:
Computer-Aided Drug Design: An Innovative Tool for Modeling
Pranita P. Kore, Madhavi M. Mutha, Rishikesh V. Antre, Rajesh J. Oswal, Sandip S. Kshirsagar
DOI: 10.4236/ojmc.2012.24017 22,892 Downloads 32,850 Views Citations
Pub. Date: December 31, 2012
Computer-Aided Design of X-Ray Microtomographic Scanners
V. I. Syryamkin, E. N. Bogomolov, V. V. Brazovsky, A. Sh. Bureev, G. S. Glushkov, A. V. Vasiliev
DOI: 10.4236/act.2013.23015 4,141 Downloads 7,524 Views Citations
Pub. Date: September 13, 2013
Computer Aided Design of Differential Pressure Flow Meters
Yevhen Pistun, Leonid Lesovoy, Fedir Matiko, Roman Fedoryshyn
DOI: 10.4236/wjet.2014.22009 3,553 Downloads 5,959 Views Citations
Pub. Date: May 6, 2014
Computer-Aided Design and Fabrication of Finger Prosthesis
Takeshi Murayama, Kosei Oono, Mitsunori Tada, Toru Eguchi, Misuzu Nagami, Mitsuhiro Tamamoto
DOI: 10.4236/jbise.2015.82010 2,882 Downloads 3,823 Views Citations
Pub. Date: February 15, 2015
BIM as a Computer-Aided Design Methodology in Civil Engineering
Alcínia Zita Sampaio
DOI: 10.4236/jsea.2017.102012 2,815 Downloads 5,097 Views Citations
Pub. Date: February 28, 2017