Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

E. G. Haugen, “Probabilistic Mechanical Design,” John Wiley and Sons, New York, 1980.

has been cited by the following article:

  • TITLE: Probabilistic Simulation Approach to Evaluate the Tooth-Root Strength of Spur Gears with FEM-Based Verification

    AUTHORS: EL-Sayed S. Aziz, Constantin Chassapis

    KEYWORDS: Gear Design, Design for uncertainties, Probabilistic Design, Reliability, FEM

    JOURNAL NAME: Engineering, Vol.3 No.12, December 14, 2011

    ABSTRACT: Dependency on deterministic design techniques without attention to inherent process variations and uncertainties in gear design and manufacturing processes can lead to unreliable results and affect the performance of a gearing system. A better understanding of the impact of uncertainty associated with the system input on the system output can be achieved by including reliability techniques to accomplish a reliable design methodology. This emerged the need to consider the probabilistic behavior of the stress distribution on the gear tooth during the design phase. The present effort reports on the application of the SSI theory within the context of a “Design for Reliability” approach in support a detailed gear design methodology for the evaluation the tooth-root strength with FEM-based verification. The SSI theory is formulated to predict the effect of the root fillet generated by a rack or hob tool with and without protuberance on the gear system reliability. The results obtained from the probabilistic analysis strongly agreed with the FEM’ results across a range of different gear tooth fillet profiles. A quantitative assessment of the investigated gear sets showed the highest tooth-root stress was associated with the lowest tip radius of the generating tool. This approach helps with making the decision by quantifying the impact of stress and strength variations during the gear design stage.