Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Fedorchuk, V.M. and Fedorchuk, V.I. (2006) On Classification of the Low-Dimensional Non-Conjugate Subalgebras of the Lie Algebra of the Poincaré Group P(1,4). Proceedings of Institute of Mathematics of NAS of Ukraine, 3, 302-308. (In Ukrainian)
has been cited by the following article:
TITLE: On Symmetry Reduction of the (1 + 3)-Dimensional Inhomogeneous Monge-Ampère Equation to the First-Order ODEs
AUTHORS: Vasyl M. Fedorchuk, Volodymyr I. Fedorchuk
KEYWORDS: Symmetry Reduction, Invariant Solutions, Monge-Ampère Equation, Classification of Lie Algebras, Poincaré Group P(1, 4)
JOURNAL NAME: Applied Mathematics, Vol.11 No.11, November 25, 2020
ABSTRACT: We present the results obtained concerning the classification of symmetry reduction of the (1 + 3)-dimensional inhomogeneous Monge-Ampère equation to first-order ODEs. Some classes of the invariant solutions are constructed.
Related Articles:
Enveloping Lie Algebras of Low Dimensional Leibniz Algebras
Massoud Amini, Isamiddin Rakhimov, Seyed Jalal Langari
DOI: 10.4236/am.2011.28142 4,384 Downloads 7,672 Views Citations
Pub. Date: August 18, 2011
Using Tangent Boost along a Worldline and Its Associated Matrix in the Lie Algebra of the Lorentz Group
Michel Langlois, Martin Meyer, Jean-Marie Vigoureux
DOI: 10.4236/jmp.2017.88079 679 Downloads 979 Views Citations
Pub. Date: July 7, 2017
On the Poincaré Algebra in a Complex Space-Time Manifold
Nathalie Debergh, Gilles D’Agostini, Jean-Pierre Petit
DOI: 10.4236/jmp.2021.123017 41 Downloads 141 Views Citations
Pub. Date: February 10, 2021
On the Initial Subalgebra of a Graded Lie Algebra
Thomas B. Gregory
DOI: 10.4236/apm.2014.49058 2,412 Downloads 2,838 Views Citations
Pub. Date: September 22, 2014
QED-Lie Algebra and Their £ -Modules in Superconductivity
Francisco Bulnes
DOI: 10.4236/jamp.2015.34053 4,207 Downloads 4,805 Views Citations
Pub. Date: April 20, 2015