Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Fushchich, V.I. and Serov, N.I. (1983) Symmetry and Some Exact Solutions of the Multidimensional Monge-Ampère Equation. Doklady Akademii Nauk SSSR, 273, 543-546. (In Russian)
has been cited by the following article:
TITLE: On Symmetry Reduction of the (1 + 3)-Dimensional Inhomogeneous Monge-Ampère Equation to the First-Order ODEs
AUTHORS: Vasyl M. Fedorchuk, Volodymyr I. Fedorchuk
KEYWORDS: Symmetry Reduction, Invariant Solutions, Monge-Ampère Equation, Classification of Lie Algebras, Poincaré Group P(1, 4)
JOURNAL NAME: Applied Mathematics, Vol.11 No.11, November 25, 2020
ABSTRACT: We present the results obtained concerning the classification of symmetry reduction of the (1 + 3)-dimensional inhomogeneous Monge-Ampère equation to first-order ODEs. Some classes of the invariant solutions are constructed.
Related Articles:
Exact Solutions to the Generalized Benjamin Equation
Hua Gao, Genhu Di
DOI: 10.4236/jamp.2014.27074 2,789 Downloads 3,979 Views Citations
Pub. Date: June 20, 2014
Some New Exact Traveling Wave Solutions for the Generalized Benney-Luke (GBL) Equation with Any Order
Jun-Jie Wang, Lian-Tang Wang, Kuan-De Yang
DOI: 10.4236/am.2012.34046 4,363 Downloads 7,223 Views Citations
Pub. Date: April 27, 2012
Lie Group Classifications and Stability of Exact Solutions for Multidimensional Landau-Lifshitz Equations
Jiali Yu, Fuzhi Li, Hui Yang, Ganshan Yang
DOI: 10.4236/am.2016.77061 1,623 Downloads 2,051 Views Citations
Pub. Date: April 28, 2016
Variable Separation and Exact Solutions for the Kadomtsev-Petviashvili Equation
Lili Song, Yadong Shang
DOI: 10.4236/apm.2015.53014 3,186 Downloads 3,611 Views Citations
Pub. Date: March 12, 2015
Exact Traveling Wave Solutions of Equalwidth Equation
Xiaoling Tang, Hanze Liu
DOI: 10.4236/jamp.2019.710157 217 Downloads 391 Views Citations
Pub. Date: October 14, 2019