Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Jiang, F. and Trudinger, N.S. (2018) On the Second Boundary Value Problem for Monge-Ampère Type Equations and Geometric Optics. Archive for Rational Mechanics and Analysis, 229, 547-567. https://doi.org/10.1007/s00205-018-1222-8
has been cited by the following article:
TITLE: On Symmetry Reduction of the (1 + 3)-Dimensional Inhomogeneous Monge-Ampère Equation to the First-Order ODEs
AUTHORS: Vasyl M. Fedorchuk, Volodymyr I. Fedorchuk
KEYWORDS: Symmetry Reduction, Invariant Solutions, Monge-Ampère Equation, Classification of Lie Algebras, Poincaré Group P(1, 4)
JOURNAL NAME: Applied Mathematics, Vol.11 No.11, November 25, 2020
ABSTRACT: We present the results obtained concerning the classification of symmetry reduction of the (1 + 3)-dimensional inhomogeneous Monge-Ampère equation to first-order ODEs. Some classes of the invariant solutions are constructed.
Related Articles:
Boundary Value Problems for Burgers Equations, through Nonstandard Analysis
Saida Bendaas
DOI: 10.4236/am.2015.66099 3,622 Downloads 4,222 Views Citations
Pub. Date: June 10, 2015
Boundary Value Problems for Nonlinear Elliptic Equations of Second Order in High Dimensional Domains
Guochun Wen, Dechang Chen
DOI: 10.4236/am.2013.412225 2,912 Downloads 4,257 Views Citations
Pub. Date: December 3, 2013
On the Solvability of the Boundary-Value Problem for the First Order Operator-Differential Equations with Multiple Characteristics
Mohamed A. Labeeb, Ahmed L. Elbably, Abdel Baset I. Ahmed
DOI: 10.4236/oalib.1104155 506 Downloads 770 Views Citations
Pub. Date: December 19, 2017
Doubly Periodic Riemann Boundary Value Problem of Non-Normal Type for Analytic Functions on Two Parallel Curves
Lixia Cao, Huijun Zheng
DOI: 10.4236/apm.2015.51006 2,271 Downloads 2,611 Views Citations
Pub. Date: January 23, 2015
General Periodic Boundary Value Problem for Systems
Mohammed Elnagi
DOI: 10.4236/am.2012.38130 4,663 Downloads 7,251 Views Citations
Pub. Date: August 1, 2012