Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Fedorchuk, V.M. and Fedorchuk, V.I. (2019) On Symmetry Reduction of the Euler-Lagrange-Born-Infeld Equation to Linear ODEs. Symmetry and Integrability of Equations of Mathematical Physics, 16, 193-202.
has been cited by the following article:
TITLE: On Symmetry Reduction of the (1 + 3)-Dimensional Inhomogeneous Monge-Ampère Equation to the First-Order ODEs
AUTHORS: Vasyl M. Fedorchuk, Volodymyr I. Fedorchuk
KEYWORDS: Symmetry Reduction, Invariant Solutions, Monge-Ampère Equation, Classification of Lie Algebras, Poincaré Group P(1, 4)
JOURNAL NAME: Applied Mathematics, Vol.11 No.11, November 25, 2020
ABSTRACT: We present the results obtained concerning the classification of symmetry reduction of the (1 + 3)-dimensional inhomogeneous Monge-Ampère equation to first-order ODEs. Some classes of the invariant solutions are constructed.
Related Articles:
Symmetry Reduction and Explicit Solutions of the (2 + 1)-Dimensional DLW Equation
Zhengyi Ma, Jinxi Fei, Yuanming Chen
DOI: 10.4236/am.2014.520304 2,264 Downloads 2,684 Views Citations
Pub. Date: November 20, 2014
Symmetry in Equations of Motion between the Atomic and Astronomical Models
Abed El Karim S. Abou Layla
DOI: 10.4236/jhepgc.2017.32028 832 Downloads 1,147 Views Citations
Pub. Date: April 27, 2017
Solution of Maxwell’s Equations for Cylindrical Symmetry Waveguides
N. V. Selina
DOI: 10.4236/jamp.2020.85058 161 Downloads 403 Views Citations
Pub. Date: April 26, 2020
Temperature Effects on the Equation of State and Symmetry Energy: A Critique
Hesham Mansour
DOI: 10.4236/ojm.2018.84004 358 Downloads 490 Views Citations
Pub. Date: November 29, 2018
Symmetry and relativity: From classical mechanics to modern particle physics
Z. J. Ajaltouni
DOI: 10.4236/ns.2014.64023 4,562 Downloads 6,172 Views Citations
Pub. Date: February 28, 2014