Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Oliveri, F. (2010) Lie Symmetries of Differential Equations: Classical Results and Recent Contributions. Symmetry, 2, 658-706. https://doi.org/10.3390/sym2020658
has been cited by the following article:
TITLE: On Symmetry Reduction of the (1 + 3)-Dimensional Inhomogeneous Monge-Ampère Equation to the First-Order ODEs
AUTHORS: Vasyl M. Fedorchuk, Volodymyr I. Fedorchuk
KEYWORDS: Symmetry Reduction, Invariant Solutions, Monge-Ampère Equation, Classification of Lie Algebras, Poincaré Group P(1, 4)
JOURNAL NAME: Applied Mathematics, Vol.11 No.11, November 25, 2020
ABSTRACT: We present the results obtained concerning the classification of symmetry reduction of the (1 + 3)-dimensional inhomogeneous Monge-Ampère equation to first-order ODEs. Some classes of the invariant solutions are constructed.
Related Articles:
Lie Symmetries of Klein-Gordon and Schrödinger Equations
Muhammad Iqbal, Yufeng Zhang
DOI: 10.4236/am.2018.93025 599 Downloads 1,165 Views Citations
Pub. Date: March 30, 2018
Lie Symmetries, 1-Dimensional Optimal System and Optimal Reductions of (1 + 2)-Dimensional Nonlinear Schrödinger Equation
Meirong Mu, Chaolu Temuer
DOI: 10.4236/jamp.2014.27067 3,402 Downloads 4,272 Views Citations
Pub. Date: June 17, 2014
Lie Symmetry Analysis, Optimal Systems and Explicit Solutions of the Dispersive Long Wave Equations
Xiaomei Xue, Yushan Bai
DOI: 10.4236/jamp.2018.612222 504 Downloads 857 Views Citations
Pub. Date: December 29, 2018
Non-Lie Symmetry Groups and New Exact Solutions to the (2 + 1)-Dimensional Broer-Kaup System
Bin Zheng, Xiqiang Liu
DOI: 10.4236/apm.2013.31020 3,599 Downloads 5,689 Views Citations
Pub. Date: January 29, 2013
On Simple Completely Reducible Binary-Lie Superalgebras over sl2(F)
Manuel Arenas
DOI: 10.4236/apm.2015.55030 4,034 Downloads 4,471 Views Citations
Pub. Date: April 20, 2015