Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Rossi, A., Pappalardo, L., Cintia, P., et al. (2018) Effective Injury Forecasting in Soccer with GPS Training Data and Machine Learning. PloS ONE, 13, e0201264. https://doi.org/10.1371/journal.pone.0201264
has been cited by the following article:
TITLE: Injury Analysis Based on Machine Learning in NBA Data
AUTHORS: Wangwei Wu
KEYWORDS: Random Forest, Injury, PCA, NBA
JOURNAL NAME: Journal of Data Analysis and Information Processing, Vol.8 No.4, November 13, 2020
ABSTRACT: It is a commonplace that the injury plays a vital influence in an NBA match and it may reverse the result of two teams with wide strength disparity. In this article, in order to decrease the uncertainty of the risk in the coming match, we propose a pipeline from gathering data at the player’s level including the fundamental statistics and the performance in the match before and data at the team’s level including the basic information and the opponent team’s status in the match we predict on. Confined to the limited and extremely unbalanced data, our result showed a limited power on injury prediction but it made a not bad result on the injury of the star player in a team. We also analyze the contribution of the factors to our prediction. It demonstrated that player’s own performance matters most in their injury. The Principal Component Analysis is also applied to help reduce the dimension of our data and to show the correlation of different features.
Related Articles:
Forecasting Alzheimer’s Disease Using Combination Model Based on Machine Learning
He Li, Yuhang Wu, Yingnan Zhang, Tao Wei, Yufeng Gui
DOI: 10.4236/am.2018.94030 477 Downloads 958 Views Citations
Pub. Date: April 30, 2018
Statistical and Machine Learning Methods for Vaccine Demand Forecasting: A Comparative Analysis
Rachel T. Alegado, Gilbert M. Tumibay
DOI: 10.4236/jcc.2020.810005 158 Downloads 342 Views Citations
Pub. Date: October 28, 2020
Forecasting S&P 500 Stock Index Using Statistical Learning Models
Chongda Liu, Jihua Wang, Di Xiao, Qi Liang
DOI: 10.4236/ojs.2016.66086 1,856 Downloads 3,620 Views Citations
Pub. Date: December 7, 2016
Appreciative Inquiry: An Effective Training Alternative to Traditional Adult Learning?
Jillian Webb Day, Courtney L. Holladay
DOI: 10.4236/psych.2012.312A166 4,369 Downloads 7,202 Views Citations
Pub. Date: December 31, 2012
Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data
Sridhar Dutta, Sukumar Bandopadhyay, Rajive Ganguli, Debasmita Misra
DOI: 10.4236/jilsa.2010.22012 6,068 Downloads 11,749 Views Citations
Pub. Date: June 1, 2010