Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Lin, G.G. (2011) Nonlinear Evolution Equations. Yunnan University Press, Kunming.
has been cited by the following article:
TITLE: The Global Attractors and Dimensions Estimation for the Higher-Order Nonlinear Kirchhoff-Type Equation with Strong Damping
AUTHORS: Guoguang Lin, Yalan Yang
KEYWORDS: Nonlinear Higher-Order Kirchhoff Type Equation, The Priori Estimates, The Galerkin’s Method, The Global Attractors, Dimension Estimation
JOURNAL NAME: International Journal of Modern Nonlinear Theory and Application, Vol.9 No.4, November 4, 2020
ABSTRACT: The initial boundary value problems for a class of high order Kirchhoff type equations with nonlinear strongly damped terms are considered. We establish the existence and uniqueness of the global solution of the problem by using prior estimates and Galerkin’s method under proper assumptions for the rigid term. Then the compact method is used to prove the existence of a compact family of global attractors in the solution semigroup generated by the problem. Finally, the Frechet differentiability of the operator semigroup and the decay of the volume element of linearization problem are proved, and the Hausdorff dimension and Fractal dimension of the family of global attractors are obtained.
Related Articles:
Nonlinear Evolution Equations and Its Application to a Tumour Invasion Model
Akisato Kubo, Yuto Miyata, Hidetoshi Kobayashi, Hiroki Hoshino, Naoki Hayashi
DOI: 10.4236/apm.2016.612066 1,391 Downloads 1,931 Views Citations
Pub. Date: November 17, 2016
The exp(-φ(ξ))-Expansion Method and Its Application for Solving Nonlinear Evolution Equations
Mahmoud A. E. Abdelrahman, Emad H. M. Zahran, Mostafa M. A. Khater
DOI: 10.4236/ijmnta.2015.41004 4,634 Downloads 5,567 Views Citations
Pub. Date: March 11, 2015
The exp(-j(x)) Method and Its Applications for Solving Some Nonlinear Evolution Equations in Mathematical Physics
Maha S. M. Shehata
DOI: 10.4236/ajcm.2015.54041 4,408 Downloads 5,038 Views Citations
Pub. Date: December 30, 2015
Nonlinear Evolution Characteristics of the NCEP Ensemble Forecast Products
Yong Li, Xiakun Zhang
DOI: 10.4236/acs.2018.83022 387 Downloads 593 Views Citations
Pub. Date: July 26, 2018
A New Approach for Solving Nonlinear Equations by Using of Integer Nonlinear Programming
Armin Ghane-Kanafi, Sohrab Kordrostami
DOI: 10.4236/am.2016.76043 2,072 Downloads 2,721 Views Citations
Pub. Date: March 24, 2016