SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


J. Zhai and G. N. Wang, “An anti-collision algorithm using two-functioned estimation for RFID tags,” in Proceedings International Conference Computational Science and its Applications, Vol. 3843, pp. 702-711, May 2005.

has been cited by the following article:

  • TITLE: Synchronous Dynamic Adjusting: An Anti-Collision Algorithm for an RF-UCard System

    AUTHORS: Jichang CAO, Lin SHU, Zhengding LU

    KEYWORDS: RF-UCard, Anti-collision Algorithm, Synchronous Dynamic Adjusting, RFID, ALOHA, DFSA, BBEI

    JOURNAL NAME: International Journal of Communications, Network and System Sciences, Vol.2 No.1, February 26, 2009

    ABSTRACT: An RF-UCard system is a contactless smartcard system with multiple chip operating systems and multiple applications. A multi-card collision occurs when more than one card within the reader’s read field and thus lowers the efficiency of the system. This paper presents a novel and enhanced algorithm to solve the multi-card collision problems in an RF-UCard system. The algorithm was originally inspired from framed ALOHA-based anti-collision algorithms applied in RFID systems. To maximize the system efficiency, a synchronous dynamic adjusting (SDA) scheme that adjusts both the frame size in the reader and the response probability in cards is developed and evaluated. Based on some mathematical results derived from the Poisson process and the occupancy problem, the algorithm takes the estimated card quantity and the new arriving cards in the current read cycle into consideration to adjust the frame size for the next read cycle. Also it changes the card response probability according to the request commands sent from the reader. Simulation results show that SDA outperforms other ALOHA-based anti-collision algorithms applied in RFID systems.