Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Tamsir, M. and Srivastava, V.K. (2016) Analytical Study of Time-Fractional Order Klein-Gordon Equation. Alexandria Engineering Journal, 55, 561-567. https://doi.org/10.1016/j.aej.2016.01.025
has been cited by the following article:
TITLE: The Adomian Decomposition Method for a Type of Fractional Differential Equations
AUTHORS: Peng Guo
KEYWORDS: Caputo, Fractional Integral, Adomian Decomposition Method, Approximate
JOURNAL NAME: Journal of Applied Mathematics and Physics, Vol.7 No.10, October 24, 2019
ABSTRACT: Fractional differential equations are widely used in many fields. In this paper, we discussed the fractional differential equation and the applications of Adomian decomposition method. Where the fractional operator is in Caputo sense. Through the numerical test, we can find that the Adomian decomposition method is a powerful tool for solving linear and nonlinear fractional differential equations. The numerical results also show the efficiency of this method.
Related Articles:
Implementation of the Homotopy Perturbation Sumudu Transform Method for Solving Klein-Gordon Equation
Amr M. S. Mahdy, Adel S. Mohamed, Ahmad A. H. Mtawa
DOI: 10.4236/am.2015.63056 4,697 Downloads 5,450 Views Citations
Pub. Date: March 24, 2015
RETRACTED:Implementation of the Homotopy Perturbation Sumudu Transform Method for Solving Klein-Gordon Equation
DOI: 10.4236/am.2015.61014 4,490 Downloads 5,313 Views Citations
Pub. Date: January 14, 2015
First Integral Method: A General Formula for Nonlinear Fractional Klein-Gordon Equation Using Advanced Computing Language
Mohamed A. Abdoon
DOI: 10.4236/ajcm.2015.52011 5,674 Downloads 6,134 Views Citations
Pub. Date: June 10, 2015
Approximate Solution of Non-Linear Fractional Klein-Gordon Equation Using Spectral Collocation Method
Rubayyi T. Alqahtani
DOI: 10.4236/am.2015.613190 2,188 Downloads 2,781 Views Citations
Pub. Date: November 30, 2015
Fractional Difference Approximations for Time-Fractional Telegraph Equation
Ru Liu
DOI: 10.4236/jamp.2018.61029 525 Downloads 978 Views Citations
Pub. Date: January 31, 2018