Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Sabatier, J., Argawal, O.P. and Machado, A.T. (2007) Advances in Fractional Calculus. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6042-7
has been cited by the following article:
TITLE: The Adomian Decomposition Method for a Type of Fractional Differential Equations
AUTHORS: Peng Guo
KEYWORDS: Caputo, Fractional Integral, Adomian Decomposition Method, Approximate
JOURNAL NAME: Journal of Applied Mathematics and Physics, Vol.7 No.10, October 24, 2019
ABSTRACT: Fractional differential equations are widely used in many fields. In this paper, we discussed the fractional differential equation and the applications of Adomian decomposition method. Where the fractional operator is in Caputo sense. Through the numerical test, we can find that the Adomian decomposition method is a powerful tool for solving linear and nonlinear fractional differential equations. The numerical results also show the efficiency of this method.
Related Articles:
Applications of Fractional Calculus to Newtonian Mechanics
Gabriele U. Varieschi
DOI: 10.4236/jamp.2018.66105 1,064 Downloads 2,069 Views Citations
Pub. Date: June 21, 2018
Fractional Calculus, Fractional Differential Equations and Applications
Mariam Almadi Mohammed Mu’lla
DOI: 10.4236/oalib.1106244 129 Downloads 691 Views Citations
Pub. Date: June 23, 2020
An Image Enhancement Method Based on Fractional Calculus and Retinex
Jingang Cao
DOI: 10.4236/jcc.2018.611005 420 Downloads 715 Views Citations
Pub. Date: November 14, 2018
Kummer’s 24 Solutions of the Hypergeometric Differential Equation with the Aid of Fractional Calculus
Tohru Morita, Ken-ichi Sato
DOI: 10.4236/apm.2016.63015 3,130 Downloads 4,569 Views Citations
Pub. Date: February 29, 2016
Bounded Turning of an m-th Partial Sum of Modified Caputo’s Fractional Calculus Derivative Operator
Ajai P. Terwase, S. Longwap, N. M. Choji
DOI: 10.4236/oalib.1105324 119 Downloads 224 Views Citations
Pub. Date: March 27, 2020