Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Khan, F., Mustafa, G., Omar, M. and Komal, H. (2017) Numerical Approach Based on Bernstein Polynomials for Solving Mixed Volterra-Fredholm Integral Equations. AIP Advances, 7, 125-123. https://doi.org/10.1063/1.5008818
has been cited by the following article:
TITLE: The Successive Approximation Method for Solving Nonlinear Fredholm Integral Equation of the Second Kind Using Maple
AUTHORS: Dalal Adnan Maturi
KEYWORDS: Nonlinear Fredholm Integral Equation of the Second Kind, Successive Approximation Method, Maple18
JOURNAL NAME: Advances in Pure Mathematics, Vol.9 No.10, September 30, 2019
ABSTRACT: In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.
Related Articles:
The Adomian Decomposition Method for Solving Volterra-Fredholm Integral Equation Using Maple
Hunida M. Malaikah
DOI: 10.4236/am.2020.118052 102 Downloads 275 Views Citations
Pub. Date: August 27, 2020
Numerical Treatment of Nonlinear Volterra-Fredholm Integral Equation with a Generalized Singular Kernel
Fatheah Ahmed Hendi, Manal Mohamed Al-Qarni
DOI: 10.4236/ajcm.2016.63025 1,297 Downloads 2,144 Views Citations
Pub. Date: September 14, 2016
An Integral Collocation Approach Based on Legendre Polynomials for Solving Riccati, Logistic and Delay Differential Equations
M. M. Khader, A. M. S. Mahdy, M. M. Shehata
DOI: 10.4236/am.2014.515228 5,323 Downloads 5,996 Views Citations
Pub. Date: August 19, 2014
Solving high-order nonlinear Volterra-Fredholm integro-differential equations by differential transform method
Salah H. Behiry, Saied I. Mohamed
DOI: 10.4236/ns.2012.48077 6,395 Downloads 11,291 Views Citations
Pub. Date: August 29, 2012
Chebyshev Polynomials for Solving a Class of Singular Integral Equations
Samah M. Dardery, Mohamed M. Allan
DOI: 10.4236/am.2014.54072 5,706 Downloads 7,332 Views Citations
Pub. Date: March 18, 2014