Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Maturi, D.A., Bajamal, A.Z. and Al-Gethami, B.M. (2014) Numerical Solution of Volterra Integral Equation of Second Kind Using Implicit Trapezoidal. Journal of Advances in Mathematics, 8, 1540-1553.
has been cited by the following article:
TITLE: The Successive Approximation Method for Solving Nonlinear Fredholm Integral Equation of the Second Kind Using Maple
AUTHORS: Dalal Adnan Maturi
KEYWORDS: Nonlinear Fredholm Integral Equation of the Second Kind, Successive Approximation Method, Maple18
JOURNAL NAME: Advances in Pure Mathematics, Vol.9 No.10, September 30, 2019
ABSTRACT: In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.
Related Articles:
Numerical Solution of the Fredholme-Volterra Integral Equation by the Sinc Function
Ali Salimi Shamloo, Sanam Shahkar, Alieh Madadi
DOI: 10.4236/ajcm.2012.22019 4,197 Downloads 8,589 Views Citations
Pub. Date: June 22, 2012
Multistage Numerical Picard Iteration Methods for Nonlinear Volterra Integral Equations of the Second Kind
Lian Chen, Junsheng Duan
DOI: 10.4236/apm.2015.511061 4,014 Downloads 5,014 Views Citations
Pub. Date: September 7, 2015
The Estimation of the Error at Richardson’s Extrapolation and the Numerical Solution of Integral Equations of the Second Kind
Igor Petrovich Dobrovolsky
DOI: 10.4236/oalib.1102051 1,653 Downloads 2,050 Views Citations
Pub. Date: November 9, 2015
Numerical Solution of Two Dimensional Fredholm Integral Equations of the Second Kind by the Barycentric Lagrange Function*
Hongyan Liu, Jin Huang, Yubin Pan
DOI: 10.4236/jamp.2017.52023 922 Downloads 1,572 Views Citations
Pub. Date: February 15, 2017
Erratum to “Weierstrass’ Elliptic Function Solution to the Autonomous Limit of the String Equation of Type (2,5)” [Advances in Pure Mathematics 4 (2014), 494-497]
Yoshikatsu Sasaki
DOI: 10.4236/apm.2014.412077 3,154 Downloads 3,461 Views Citations
Pub. Date: December 30, 2014