Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Linz, P. (1985) Analytical and Numerical Methods for Volterra Equations. Studies in Applied Mathematics 7, SIAM, Philadelphia. https://doi.org/10.1137/1.9781611970852
has been cited by the following article:
TITLE: The Successive Approximation Method for Solving Nonlinear Fredholm Integral Equation of the Second Kind Using Maple
AUTHORS: Dalal Adnan Maturi
KEYWORDS: Nonlinear Fredholm Integral Equation of the Second Kind, Successive Approximation Method, Maple18
JOURNAL NAME: Advances in Pure Mathematics, Vol.9 No.10, September 30, 2019
ABSTRACT: In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.
Related Articles:
Modified Adomian Techniques Applied to Non-Linear Volterra Integral Equations
Haifa H. Ali, Fawzi Abdelwahid
DOI: 10.4236/ojapps.2013.32027 3,397 Downloads 5,061 Views Citations
Pub. Date: June 20, 2013
Numerical Solutions of Volterra Equations Using Galerkin Method with Certain Orthogonal Polynomials
James E. Mamadu, Ignatius N. Njoseh
DOI: 10.4236/jamp.2016.42044 2,881 Downloads 3,863 Views Citations
Pub. Date: February 26, 2016
An Introduction to Numerical Methods for the Solutions of Partial Differential Equations
Manoj Kumar, Garima Mishra
DOI: 10.4236/am.2011.211186 13,030 Downloads 27,711 Views Citations
Pub. Date: November 30, 2011
Efficient Numerical Methods for Solving Differential Algebraic Equations
Ampon Dhamacharoen
DOI: 10.4236/jamp.2016.41007 2,578 Downloads 4,135 Views Citations
Pub. Date: January 11, 2016
Numerical Solution of Nonlinear Fredholm-Volterra Integtral Equations via Piecewise Constant Function by Collocation Method
A. Shahsavaran
DOI: 10.4236/ajcm.2011.12014 4,459 Downloads 10,728 Views Citations
Pub. Date: June 30, 2011