Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Milekhin, A.G., Yerykov, N.A., Sveshnikova, L.L., Duda, T.A., Zenkevitch, E.I., Kosolobov, S.S., Latyshev, A.V., Himenski, C., Surovtsev, N.V., Adichchev, S.V., Feng, Z.C., Wu, C.C., Wuu, D.S. and Zahn, D.R.T. (2011) Surface-Enhanced Raman Scattering of Light by ZnO Nanostructures. Journal of Experimental and Theoretical Physics, 113, 983-991.

has been cited by the following article:

  • TITLE: Nonstationary Stimulated Raman Scattering by Polaritons in Cubic Crystals

    AUTHORS: Vladimir Feshchenko, Galina Feshchenko

    KEYWORDS: Nonstationary Stimulated Raman Scattering, Polaritons, Phonons

    JOURNAL NAME: Journal of Applied Mathematics and Physics, Vol.7 No.9, September 27, 2019

    ABSTRACT: The purpose of this article is to consider two aspects of the nonstationary stimulated Raman scattering by polaritons in cubic crystals. The first feature is related to the pump field, which, by deforming the permittivity of the medium, changes its symmetry. As a result, for example, the cubic crystal becomes anisotropic. The second one results from the possibility of exciting anomalous longitudinal waves at the frequency of the mechanical phonons which is the fundamental difference between scattering by dipole-active (polar) phonons and that of by dipole-inactive (nonpolar) ones. When the phonon frequency is approached, the amplitude of the transverse polariton wave decreases due to increased absorption and the wave mismatch. The polariton wave becomes practically longitudinal. Such a wave is maintained by the pump field and exists only in a pumped medium. The system of four shortened nonstationary equations (two for the Stokes waves with perpendicular polarizations and two for both transverse and longitudinal polariton waves) is obtained. The analysis is carried out for a given stationary pump field which is assumed to be a linearly polarized plane electromagnetic wave. Principal attention was paid to the calculation and analysis of the gain factor which defines the intensities of both stimulated (SRS) and spontaneous Raman scattering. The expressions for two proper gain factors gμ are obtained for Stokes waves in nonstationary case. It was shown that the pumped cubic crystal becomes anisotropic. It is also shown that the values of intensities calculated by using the expression for gμ are consistent with the experimental results for spectra of ZnS.