Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Jefimenko, O.D. (1996) Derivation of Relativistic Force Transformation Equations from Lorentz Force Law. American Journal of Physics, 64, 618-620.

has been cited by the following article:

  • TITLE: Derivation of Maxwell’s Equations via the Covariance Requirements of the Special Theory of Relativity, Starting with Newton’s Laws

    AUTHORS: Allan D. Pierce

    KEYWORDS: Relativity, Maxwell’s Equations, Newton’s Laws, Covariance

    JOURNAL NAME: Journal of Applied Mathematics and Physics, Vol.7 No.9, September 24, 2019

    ABSTRACT: The purpose of this paper is to establish a connection between Maxwell’s equations, Newton’s laws, and the special theory of relativity. This is done with a derivation that begins with Newton’s verbal enunciation of his first two laws. Derived equations are required to be covariant, and a simplicity criterion requires that the four-vector force on a charged particle be linearly related to the four-vector velocity. The connecting tensor has derivable symmetry properties and contains the electric and magnetic field vectors. The Lorentz force law emerges, and Maxwell’s equations for free space emerge with the assumption that the tensor and its dual must both satisfy first-order partial differential equations. The inhomogeneous extension yields a charge density and a current density as being the source of the field, and yields the law of conservation of charge. Newton’s third law is reinterpreted as a reciprocity statement, which requires that the charge in the source term can be taken as the same physical entity as that of the test particle and that both can be assigned the same units. Requiring covariance under either spatial inversions or time reversals precludes magnetic charge being a source of electromagnetic fields that exert forces on electric charges.