Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Liu, L., Yao, S., Zhang, H., Muhammed, A., Xu, J., Li, R., Zhang, D., Zhang, S., & Yang, X. (2019). Soil Nitrate Nitrogen Buffer Capacity and Environmentally Safe Nitrogen Rate for Winter Wheat-Summer Maize Cropping in Northern China. Agricultural Water Management, 213, 445-453.
https://doi.org/10.1016/j.agwat.2018.11.001

has been cited by the following article:

  • TITLE: Study on Growth Monitoring and Yield Prediction of Winter Wheat in the South of Shanxi Province Based on MERSI Data and ALMANAC Crop Model

    AUTHORS: Dong Xiang, Shuying Bai, Xiaonan Mi, Yongqiang Zhao, Mengwei Li

    KEYWORDS: FY-3 Satellite, ALMANAC Crop Model, Winter Wheat, Forecast Yield

    JOURNAL NAME: Journal of Geoscience and Environment Protection, Vol.7 No.9, September 10, 2019

    ABSTRACT: Accurate crop growth monitoring and yield forecasting have important implications for food security and agricultural macro-control. Crop simulation and satellite remote sensing have their own advantages, combining the two can improve the real-time mechanism and accuracy of agricultural monitoring and evaluation. The research is based on the MERSI data carried by China’s new generation Fengyun-3 meteorological satellite, combined with the US ALMANAC crop model, established the NDVI-LAI model and realized the acquisition of LAI data from point to surface. Because of the principle of the relationship between the morphological changes of LAI curve and the growth of crops, an index that can be used to determine the growth of crops is established to realize real-time, dynamic and wide-scale monitoring of winter wheat growth. At the same time, the index was used to select the different key growth stages of winter wheat for yield estimation. The results showed that the relative error of total yield during the filling period was low, nearly 5%. The research results show that the combination of domestic meteorological satellite Fengyun-3 and ALMANAC crop model for crop growth monitoring and yield estimation is feasible, and further expands the application range of domestic satellites.