SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Joussot, R. and Viviana Lago, V. (2016) Experimental Investigation of the Properties of a Glow Discharge Used as Plasma Actuator Applied to Rarefied Supersonic Flow Control Around a Flat Plate. IEEE Transactions on Dielectrics and Electrical Insulation, 23, 671-682.
https://doi.org/10.1109/TDEI.2015.005327

has been cited by the following article:

  • TITLE: Shock Wave Mitigation by Air Plasma Deflector

    AUTHORS: Spencer P. Kuo

    KEYWORDS: Shock Wave Mitigation, Electric Discharge, Air Plasma Deflector, Shadowgraph, Drag Reduction, Wind Tunnel, Charge Transfer

    JOURNAL NAME: Advances in Aerospace Science and Technology, Vol.3 No.4, December 20, 2018

    ABSTRACT: When the spacecraft flies much faster than the sound speed (~1200 km/h), the airflow disturbances deflected forward from the spacecraft cannot get away from the spacecraft and form a shock wave in front of it. Shock waves have been a detriment for the development of supersonic aircrafts, which have to overcome high wave drag and surface heating from additional friction. Shock wave also produces sonic booms. The noise issue raises environmental concerns, which have precluded routine supersonic flight over land. Therefore, mitigation of shock wave is essential to advance the development of supersonic aircrafts. A plasma mitigation technique is studied. A theory is presented to show that shock wave structure can be modified via flow deflection. Symmetrical deflection evades the need of exchanging the transverse momentum between the flow and the deflector. The analysis shows that the plasma generated in front of the model can effectively deflect the incoming flow. A non-thermal air plasma, generated by on-board 60 Hz periodic electric arc discharge in front of a wind tunnel model, was applied as a plasma deflector for shock wave mitigation technique. The experiment was conducted in a Mach 2.5 wind tunnel. The results show that the air plasma was generated symmetrically in front of the wind tunnel model. With increasing discharge intensity, the plasma deflector transforms the shock from a welldefined attached shock into a highly curved shock structure with increasing standoff distance from the model; this curved shock has increased shock angle and also appears in increasingly diffused form. In the decay of the discharge intensity, the shock front is first transformed back to a well-defined curve shock, which moves downstream to become a perturbed oblique shock; the baseline shock front then reappears as the discharge is reduced to low level again. The experimental observations confirm the theory. The steady of the incoming flow during the discharge cycle is manifested by the repeat of the baseline shock front.