Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


P. L. Smedley and D. G. Kinniburgh, “A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters,” Applied Geochemistry, Vol. 17, No. 5, 2002, pp. 517-568. doi:10.1016/S0883-2927(02)00018-5

has been cited by the following article:

  • TITLE: Simultaneous Separation and Quantification of Iron and Transition Species Using LC-ICP-MS

    AUTHORS: Qinhong Hu

    KEYWORDS: LC-ICP-MS, Fe(II), Fe(III), Organo-Fe, Transition Metals

    JOURNAL NAME: American Journal of Analytical Chemistry, Vol.2 No.6, October 11, 2011

    ABSTRACT: Using liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS), this work investigates the simultaneous separation and quantification of seven transition metal species (Fe, Mn, Co, Ni, Cu, Zn, and Cd), based on a separation scheme published by Dionex company that used the spectrophotometric method for quantification. The LC-ICP-MS method overcomes the shortcomings of conventional ferrozine approaches of measuring Fe(II) and total Fe by two separate runs and calculating Fe(III) by the difference of two runs. The advantage is particularly evident in that organo-iron species are found to be the predominant iron species in many natural waters, and the difference method cannot measure the concentration of Fe(III) because ferrozine will not complex with organo-iron species. In the work reported here, the LC-ICP-MS method is successfully applied to the separation of dissolved iron species, as well as six other divalent transition metals in tap water, deionized water, river water, hot springs, and groundwater samples.