Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Kawai, M. and Saito, S. (2009) Off-Axis Strength Differential Effects in Unidirectional Carbon/Epoxy Laminates at Different Strain Rates and Predictions of Associated Failure Envelopes. Composites Part A: Applied Science and Manufacturing, 40, 1632-1649.
https://doi.org/10.1016/j.compositesa.2009.08.007

has been cited by the following article:

  • TITLE: Progressive Analysis of Bearing Failure in Pin-Loaded Composite Laminates Using an Elasto-Plastic Damage Model

    AUTHORS: Kang Xue

    KEYWORDS: Elasto-Plastic Damage, Composite Laminates, Bearing Failure, Progressive Analysis

    JOURNAL NAME: Materials Sciences and Applications, Vol.9 No.7, June 25, 2018

    ABSTRACT: Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process of failure in composite laminates subjected to bearing load. Non-linear behavior of composite before failure is taken into consideration by using a modified Sun-Chen one parameter plasticity model. LaRC05 failure criteria are employed to predict the initiation of failure and the evolution of failure is described by a CDM based stiffness degradation model. Both theory and some application issues like parameter determination are discussed according to phenomenon of experiments. The model is firstly validated by several experiment results of unidirectional laminate and then applicated into the progressive analysis of bearing failure in pin-loaded multidirectional laminates, both intralaminar and interlaminar damage are taken into consideration. The result of finite element analysis is compared with experiment results; it shows good agreements in both mechanical response and progress of failure, so the model can be evaluated to be effective and practical in bearing failure analysis of composite laminates.