Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

http://www.iso.org/

has been cited by the following article:

  • TITLE: Compositional Features and Industrial Assessment of Talcose Rocks of Itagunmodi-Igun Area, Southwestern Nigeria

    AUTHORS: J. O. Olajide-Kayode, O. A. Okunlola, A. S. Olatunji

    KEYWORDS: Talc-Chlorite Schist, Petrochemical, Physico-Chemical, Industrial Application

    JOURNAL NAME: Journal of Geoscience and Environment Protection, Vol.6 No.1, January 30, 2018

    ABSTRACT: Talcose rocks from Itagunmodi and Igun areas within the Ilesa Schist Belt, southwestern Nigeria, were studied to determine their compositional affinities and industrial properties. The talcose bodies occurred as lensoid enclaves closely associated with amphibolites and quartz-mica schist. Petrographic and X-ray diffraction-aided mineralogical studies reveal that the talcose rocks are of the talc-chlorite schist variety composed predominantly of talc (average 73.63%), subordinate chlorite (average 16.08%) and accessory lizardite (average 6.5%). Total whole rock characterization of the samples using Lithium Fusion digestion revealed high mean concentrations of SiO2 (57.53%), MgO (24.84%) and Fe2O3 (7.73%) with significant enrichment of Ni, Co and Cr; and low values of Ba, Rb, Sr, V, Cu and Pb. The talc-chlorite schists plotted in the peridotitic komatiite field of the Al2O3-(FeO + TiO2)-MgO diagram. Water Absorption Capacity ranges from 6.25% - 8.20%, Loss on Ignition is 4.8% - 6.1% while Linear Shrinkage is 1.25% - 1.70% and firing colour is brown to dark-brown. The overall compositional features of the talcose rocks of the area, which were hitherto uncharacterized, show their suitability as raw materials for paint, coloured pottery, ceramic insulation, textile, rubber and plastic manufacture with varying beneficiation requirements. Their high trace element content however, makes them unsuitable for use in pharmaceutical and cosmetic applications.