Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Honma, H., Honma, S. and Masuyama, S. (2009) An Optimal Parallel Algorithm for Constructing a Spanning Tree on Circular Permutation Graphs. IEICE Transactions on Information and Systems, E92.D, 141-148. https://doi.org/10.1587/transinf.E92.D.141
has been cited by the following article:
TITLE: A Parallel Algorithm for the Spanning Forest Problem on Proper Circle Graphs
AUTHORS: Hirotoshi Honma, Yoko Nakajima, Atsushi Sasaki
KEYWORDS: Design and Analysis of Parallel Algorithms, Proper Circle Graphs, Spanning Forest
JOURNAL NAME: Journal of Computer and Communications, Vol.5 No.14, December 26, 2017
ABSTRACT: Given a simple graph G with n vertices, m edges and k connected components. The spanning forest problem is to find a spanning tree for each connected component of G. This problem has applications to the electrical power demand problem, computer network design, circuit analysis, etc. In this paper, we present antime parallel algorithm with processors for constructing a spanning forest on proper circle graph G on EREW PRAM.
Related Articles:
A Parallel Algorithm for the Spanning Forest Problem on Proper Circle Graphs
Hirotoshi Honma, Yoko Nakajima, Atsushi Sasaki
DOI: 10.4236/jcc.2017.514005 293 Downloads 535 Views Citations
Pub. Date: December 26, 2017
Minimum Diameter Spanning Tree
V. T. Chandrasekaran, N. Rajasri
DOI: 10.4236/ajcm.2018.83016 249 Downloads 501 Views Citations
Pub. Date: September 7, 2018
Binary Tree’s Recursion Traversal Algorithm and Its Improvement
Hua Li
DOI: 10.4236/jcc.2016.47006 3,352 Downloads 3,672 Views Citations
Pub. Date: May 25, 2016
Characterization and Construction of Permutation Graphs
Severino V. Gervacio, Teofina A. Rapanut, Phoebe Chloe F. Ramos
DOI: 10.4236/ojdm.2013.31007 4,524 Downloads 7,719 Views Citations
Pub. Date: January 29, 2013
Permutation Algebra for Constructing Reversible Circuits
Shah Mohammad Bahauddin, Abu Ashik Md. Irfan
DOI: 10.4236/jqis.2012.23011 4,510 Downloads 7,627 Views Citations
Pub. Date: September 28, 2012