Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Sugiura, S., Chen, S. and Hanzo, L. (2012) A Universal Space-Time Architecture for Multiple-Antenna Aided Systems. IEEE Communications Surveys and Tutorials, 14, 401-420.
https://doi.org/10.1109/SURV.2011.041911.00105

has been cited by the following article:

  • TITLE: Single Carrier Frequency Domain Equalization with Space-Time Trellis Codes

    AUTHORS: Ibukunoluwa Adetutu Adebanjo, Yekeen Olajide Olasoji, Michael Olorunfunmi Kolawole

    KEYWORDS: Diversity, ISI, MMSE, STTC, Fading, SC-FDE

    JOURNAL NAME: Communications and Network, Vol.9 No.3, August 9, 2017

    ABSTRACT: Orthogonal Frequency Division Multiplexing (OFDM) is readily employed in wireless communication to combat the intersymbol interference (ISI) effect with limited success because as the capacity of MIMO systems increases, other destructive effects affect the propagation channels and/or overall system performance. As such, research interest has increased, on how to improve performance in the mediums where fading and ISI permeate, working on several combinatorial techniques to achieving improved effective throughput. In this study, we propose a combined model of the Space-Time Trellis Code (STTC) and Single-Carrier Frequency Domain Equalization (SC-FDE) to mitigate multiple-fading and interference effects. We present analytical performance results for the combined model over spatially correlated Rayleigh fading channels. We also show that it is beneficial to combine coding with equalization at the system’s receiving-end ensuring overall performance: a better performance over the traditional space-time trellis codes.