Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Straffelini, G., Avi, G. and Pellizzari, M. (2002) Trento: Effect of Three Nitriding Treatments on Tribological Performance of 42CrAlMo7 Steel in Boundary Lubrication. Wear, 252, 870-879.

has been cited by the following article:

  • TITLE: Study of the Effect of Gas Nitriding Time on Microstructure and Wear Resistance of 42CrMo4 Steel

    AUTHORS: Mohamed Ali Terres, Lotfi Ammari, Abdelkarim Chérif

    KEYWORDS: Gas Nitriding, 42CrMo4 Steel, Hardening, Wear Rate, Wear Mechanisms, Adhesive Wear

    JOURNAL NAME: Materials Sciences and Applications, Vol.8 No.6, June 22, 2017

    ABSTRACT: Prior studies have noted that gas nitriding has a considerable effect for wear resistance. The aim of this paper is to study the influence of gas nitriding time (12, 24, 36 and 48 h) in the wear behaviour of 42CrMo4 steel. It has been assessed by micro hardness, pin-on-disc tribosystem, and SEM through the nitrided layer for each nitriding time. The study relates to the performance of the compound layer and the diffusion layer with respect to adhesive wear. The results were analyzed in terms of the weight lost during wear, for nitrided steel with and without the compound layer, and for untreated steel. It has been observed that wear rate varies as a function of the tests conditions due to the presence of different wear mechanisms. Thus, for short tests conditions wear rate depends on two mechanisms: plastic deformation and adhesive wear, whereas for large tests conditions the mechanisms controlling wear rate are abrasive and oxidative wear. Furthermore, this study contains an analysis of the wear mechanisms of a nitrided part, founded on scanning electron microscopy (SEM) observations of the wear traces at various stages of the evolution of wear. The SEM examination of worn surfaces revealed signatures for the adhesion, abrasion, delamination and tribochemical (oxidative) modes of wear. This is an important issue for future research.