Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Jan, R. and Chern, M. (1994) Nonlinear Integer Bilevel Programming. European Journal of Operation Research, 72, 574-587.
has been cited by the following article:
TITLE: An Alternative Approach for Solving Bi-Level Programming Problems
AUTHORS: Rashmi Birla, Vijay K. Agarwal, Idrees A. Khan, Vishnu Narayan Mishra
KEYWORDS: Linear Programming Problem, Bi-Level Programming Problem, Graph, Algorithm
JOURNAL NAME: American Journal of Operations Research, Vol.7 No.3, May 27, 2017
ABSTRACT: An algorithm is proposed in this paper for solving two-dimensional bi-level linear programming problems without making a graph. Based on the classification of constraints, algorithm removes all redundant constraints, which eliminate the possibility of cycling and the solution of the problem is reached in a finite number of steps. Example to illustrate the method is also included in the paper.
Related Articles:
A New Approach for Solving Nonlinear Equations by Using of Integer Nonlinear Programming
Armin Ghane-Kanafi, Sohrab Kordrostami
DOI: 10.4236/am.2016.76043 2,074 Downloads 2,724 Views Citations
Pub. Date: March 24, 2016
An Exact Penalty Approach for Mixed Integer Nonlinear Programming Problems
Roohollah Aliakbari Shandiz, Nezam Mahdavi-Amiri
DOI: 10.4236/ajor.2011.13021 4,552 Downloads 8,914 Views Citations
Pub. Date: September 30, 2011
Solving Quasiconcave Bilevel Programming Problem
Dahande Balme, Laure Pauline Fotso
DOI: 10.4236/ajor.2017.72009 998 Downloads 1,415 Views Citations
Pub. Date: March 31, 2017
Solving Bilevel Linear Multiobjective Programming Problems
Calice Olivier Pieume, Patrice Marcotte, Laure Pauline Fotso, Patrick Siarry
DOI: 10.4236/ajor.2011.14024 6,129 Downloads 11,956 Views Citations
Pub. Date: December 5, 2011
An Inexact Restoration Package for Bilevel Programming Problems
Elvio A. Pilotta, Germán A. Torres
DOI: 10.4236/am.2012.330181 4,968 Downloads 7,744 Views Citations
Pub. Date: November 1, 2012