Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Buja, A., Hastie, T. and Tibshirani, R. (1989) Linear Smoothers and Additive Models. Annals of Statistics, 17, 453-555. https://doi.org/10.1214/aos/1176347115
has been cited by the following article:
TITLE: Use of BayesSim and Smoothing to Enhance Simulation Studies
AUTHORS: Jeffrey D. Hart
KEYWORDS: Loss Function, Bayes Risk, Prior Distribution, Regression, Simulation, Skew-Normal Distribution, Goodness of Fit
JOURNAL NAME: Open Journal of Statistics, Vol.7 No.1, February 28, 2017
ABSTRACT: The conventional form of statistical simulation proceeds by selecting a few models and generating hundreds or thousands of data sets from each model. This article investigates a different approach, called BayesSim, that generates hundreds or thousands of models from a prior distribution, but only one (or a few) data sets from each model. Suppose that the performance of estimators in a parametric model is of interest. Smoothing methods can be applied to BayesSim output to investigate how estimation error varies as a function of the parameters. In this way inferences about the relative merits of the estimators can be made over essentially the entire parameter space, as opposed to a few parameter configurations as in the conventional approach. Two examples illustrate the methodology: One involving the skew-normal distribution and the other nonparametric goodness-of-fit tests.
Related Articles:
Testing Some f(R,T) Gravity Models from Energy Conditions
Flavio Gimenes Alvarenga, Mahouton Jonas Stephane Houndjo, Adjimon Vincent Monwanou, Jean Bio Chabi Orou
DOI: 10.4236/jmp.2013.41019 4,430 Downloads 6,975 Views Citations
Pub. Date: January 28, 2013
Inventory and Regularity of Annals Publications of Lubumbashi Higher Institute for Statistics (Dr. Congo) from 1990 to 2015
Khang Ndipa Sabine, Abelelau Bokako Sosthene, Tshari Ngoie Hortance
DOI: 10.4236/oalib.1103640 426 Downloads 740 Views Citations
Pub. Date: July 20, 2017
Model Detection for Additive Models with Longitudinal Data
Jian Wu, Liugen Xue
DOI: 10.4236/ojs.2014.410082 3,090 Downloads 3,560 Views Citations
Pub. Date: December 29, 2014
A Broadband T/R Front-End of Millimeter Wave Holographic Imaging
Yun Sun, Minghui Yang, Hengrong Cui, Minhua Chen, Yukun Zhu, Xiaowei Sun
DOI: 10.4236/jcc.2015.33006 3,209 Downloads 3,668 Views Citations
Pub. Date: March 17, 2015
The R-W Metric Has No Constant Curvature When Scalar Factor R(t) Changes with Time
Xiaochun Mei
DOI: 10.4236/ijaa.2011.14023 4,000 Downloads 8,039 Views Citations
Pub. Date: December 19, 2011