Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
M. Asadzadeh, “Streamline Diffusion Methods for the Vlasov-Poisson Equations. RAIRO Math,” Modelling and Numerical Analysis, Vol. 24, No. 3, 1990, pp. 177-196.
has been cited by the following article:
TITLE: A Posteriori Error Estimate for Streamline Diffusion Method in Soving a Hyperbolic Equation
AUTHORS: Davood Rostamy, Fatemeh Zabihi
KEYWORDS: Streamline Diffusion Method, Hyperbolic Problems, Wave Equations, Finite Element, A Posteriori Error Estimate
JOURNAL NAME: Applied Mathematics, Vol.2 No.8, August 5, 2011
ABSTRACT: In this article, we use streamline diffusion method for the linear second order hyperbolic initial-boundary value problem. More specifically, we prove a posteriori error estimates for this method for the linear wave equation. We observe that this error estimates make finite element method increasingly powerful rather than other methods.
Related Articles:
Efficient Numerical Methods for Solving Differential Algebraic Equations
Ampon Dhamacharoen
DOI: 10.4236/jamp.2016.41007 1,906 Downloads 2,684 Views Citations
Pub. Date: January 11, 2016
Solving Stiff Reaction-Diffusion Equations Using Exponential Time Differences Methods
H. A. Ashi
DOI: 10.4236/ajcm.2018.81005 369 Downloads 740 Views Citations
Pub. Date: March 16, 2018
Convergence and Error of Some Numerical Methods for Solving a Convection-Diffusion Problem
Gabriela Nut, Ioana Chiorean, Petru Blaga
DOI: 10.4236/am.2013.45A009 3,265 Downloads 4,972 Views Citations
Pub. Date: May 27, 2013
A Posteriori Error Estimate for Streamline Diffusion Method in Soving a Hyperbolic Equation
Davood Rostamy, Fatemeh Zabihi
DOI: 10.4236/am.2011.28135 4,809 Downloads 8,291 Views Citations
Pub. Date: August 5, 2011
Mean Square Numerical Methods for Initial Value Random Differential Equations
Magdy A. El-Tawil, Mohammed A. Sohaly
DOI: 10.4236/ojdm.2011.12009 5,583 Downloads 10,649 Views Citations
Pub. Date: July 5, 2011