SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Olano, C., Carmen, M. and José, A.S. (2009) Antitumor Compounds from Marine Actinomycetes. Marine Drugs, 7, 210-248.

has been cited by the following article:

  • TITLE: Bio-Prospecting for Broad Spectrum Antibiotic Producing Actinomycetes Isolated from Virgin Soils in Kericho County, Kenya

    AUTHORS: Mercy Chepkurui Rotich, Esther Magiri, Christine Bii, Naomi Maina

    KEYWORDS: Actinomycetes, Antimicrobial Activity, Kericho County, Disc Diffusion, 16S rRNA

    JOURNAL NAME: Advances in Microbiology, Vol.7 No.1, January 13, 2017

    ABSTRACT: Antimicrobial drug resistance is a rising concern in the treatment of infectious diseases and necessitates the need for discovery of novel, potent antimicrobial compounds to combat antibiotic resistance. Since natural environment remains a potential source of novel antimicrobial products, this preliminary study was performed to test the potential of soils from Kericho County for antibiotic-producing Actinomycetes. Soil samples (214) were randomly collected from virgin soils of Kipkelion East, Kipkelion West, Belgut, Ainamoi, Sigowet and Bureti sub-counties in Kericho County from a depth of between 11 cm - 16 cm from the surface of the soil profile. A total of 107 Actinomycetes were isolated and screening was done using modified agar disc diffusion method of which only 39 (36.4%) showed antimicrobial activity against five of the six test isolates that included reference strains Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922) and Candida albicans (ATCC 90028) and three clinical strains Trichophyton mentagrophyte, Microsporum gypseum and Methicillin Resistant Staphylococcus aureus. Two of the isolates showed activity against MRSA and four isolates showed a higher potency than the standard drug Chloramphenicol (30 μg) against S. aureus. Most of the isolates (41.0%) also showed good antimicrobial activity against T. mentagrophyte, though they lower than the control drug Itraconazole (2 μg/ml), they were statistically significant. DNA from the isolates was extracted and the 16S rRNA gene was amplified using primers specific for Actinomycetes. The amplified gene was sequenced and phylogeny analysis was done. The 16S rRNA gene was able to be amplified in only 15 of these isolates. Sequencing showed that 93.3% were of the genus Streptomyces while 6.7% were of the genus Rhodococcus. From the results, the soils from this region harbour Actinomycetes that may have good potential of producing novel antibiotics against gram positive bacteria and dermatophytes.