SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Omran, M.G.H., Salman, A. and Engelbrecht, A.P. (2005) Self-Adaptive Differential Evolution. Computational Intelligence and Security of the Series Lecture Notes in Computer Science, 3801, 192-199.
http://dx.doi.org/10.1007/11596448_28

has been cited by the following article:

  • TITLE: Optimum Simultaneous Allocation of Renewable Energy DG and Capacitor Banks in Radial Distribution Network

    AUTHORS: Sivasangari Rajeswaran, Kamaraj Nagappan

    KEYWORDS: Distributed Generation, Capacitor Banks, Real Power Loss, Radial Distribution Network, Distributed Generation Sitting Index, WIPSO, SADE

    JOURNAL NAME: Circuits and Systems, Vol.7 No.11, September 8, 2016

    ABSTRACT: Nowadays the optimal allocation of distributed generation (DG) in the distribution network becomes the popular research area in restructuring of power system. The capacitor banks introduced in the distribution networks for reactive power compensation also have the capacity to minimize the real and reactive power losses occurred in the system. Hence, this research integrates the allocation of renewable energy DG and capacitor banks in the radial distribution network to minimize the real power loss occurred in the system. A two-stage methodology is used for simultaneous allocation of renewable DG and capacitor banks. The optimum location of renewable energy DG and capacitor banks is determined using the distributed generation sitting index (DGSI) ranking method and the optimum sizing of DG and capacitor banks is found out for simultaneous placement using weight improved particle swarm optimization algorithm (WIPSO) and self adaptive differential evolution algorithm (SADE). This two-stage methodology reduces the burden of SADE and WIPSO algorithm, by using the DGSI index in determining the optimal location. Hence the computational time gets reduced which makes them suitable for online applications. By using the above methodology, a comprehensive performance analysis is done on IEEE 33 bus and 69 bus RDNs and the results are discussed in detail.