Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Feferman, et al. (1995) op. cit. Volume III, Oxford University Press, Oxford, 439. In the textual notes is written: “The copy-text for *1930c [...] was one of several items in an envelope that Gödel labelled “Manuskripte Korrekt der 3 Arbeiten in Mo[nats]H[efte] + Wiener Vorträge über die ersten zwei” (manuscripts, proofs for the three papers in Monatshefte [1930, 1931, and 1933i] plus Vienna lectures on the first two.) On the basis of that label, *1930c ought to be the text of Gödel’s presentation to Menger’s colloquium on 14 May 1930—the only occasion, aside from the meeting in Königsberg, on which Gödel is known to have lectured on his dissertation results [...]. Internal evidence, however, especially the reference on the last page to the incompleteness discovery, suggests that the text must be that of the later talk. Since no other lecture text on this topic has been found, it may well be that Gödel used the same basic text on both occasions, with a few later additions”.

has been cited by the following article:

  • TITLE: Consequences of a Godel’s Misjudgment

    AUTHORS: Giuseppe Raguní

    KEYWORDS: Semantic Completeness, Syntactic Incompleteness, Categoricity, Arithmetic, Second-Order Languages, Paradoxes

    JOURNAL NAME: Open Access Library Journal, Vol.2 No.9, September 15, 2015

    ABSTRACT: The fundamental aim of the paper is to correct a harmful way to interpret a Godel’s erroneous remark at the Congress of Konigsberg in 1930. Although the Godel’s fault is rather venial, its misreading has produced and continues to produce dangerous fruits, so as to apply the incompleteness Theorems to the full second-order Arithmetic and to deduce the semantic incompleteness of its language by these same Theorems. The first three paragraphs are introductory and serve to define the languages inherently semantic and its properties, to discuss the consequences of the expression order used in a language and some questions about the semantic completeness. In particular, it is highlighted that a non-formal theory may be semantically complete despite using a language semantically incomplete. Finally, an alternative interpretation for the Godel’s unfortunate comment is proposed.