Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Venkatesan, S. and Hariharan, J. (2014) Design and Implementation of FFT Algorithm for MB-OFDM with Parallel Architecture. International Journal of Scientific & Engineering Research, 5, No. 5.

has been cited by the following article:

  • TITLE: Design of Low Power and High Speed Correlators for IEEE 802.16 WiMAX Systems

    AUTHORS: B. Sivasankari, P. Poongodi

    KEYWORDS: Communication, Timing Synchronization, FPGA, Multipliers, Parallel Processing, Power, Delay

    JOURNAL NAME: Circuits and Systems, Vol.7 No.8, June 9, 2016

    ABSTRACT: The advanced communication system uses wireless broadband access technologies which provide high speed data connectivity to the subscribers. One of the most popular wireless access technology is Worldwide Interoperability for Microwave Access (WiMAX) and it is based on IEEE 802.16 standard. WiMAX used Orthogonal Frequency Division Multiplexing (OFDM) is an effective modulation technique to improve the timing synchronization. The performance of channel is affecteddue to the synchronization mismatching between the transmitter and receiver ends. To achievethe timing synchronization in IEEE 802.16 systems, the cross correlator is used to synchronize the received signal with the known signal. In this paper, two high speed correlators are proposed based on Q1.15 format, which is used to validate the timing synchronization problem. The proposed work has been mapped on XC6VCX75T FPGA and simulations are carried out on the Xilinx-ISIM platform. The implementation result shows that the power delay product reduction is 40.81%, and delay reduction is 39.59% over the conventional multiplier less correlators.