Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Saad, Y. (2003) Iterative Methods for Sparse Linear Systems. 2nd Edition, SIAM, Philadelphia. http://dx.doi.org/10.1137/1.9780898718003
has been cited by the following article:
TITLE: A New Approximation to the Linear Matrix Equation AX = B by Modification of He’s Homotopy Perturbation Method
AUTHORS: Amir Sadeghi
KEYWORDS: Matrix Equation, Homotopy Perturbation Method, Convergence, Diagonally Dominant Matrix, Regular Splitting
JOURNAL NAME: Advances in Linear Algebra & Matrix Theory, Vol.6 No.2, May 26, 2016
ABSTRACT: It is well known that the matrix equations play a significant role in engineering and applicable sciences. In this research article, a new modification of the homotopy perturbation method (HPM) will be proposed to obtain the approximated solution of the matrix equation in the form AX = B. Moreover, the conditions are deduced to check the convergence of the homotopy series. Numerical implementations are adapted to illustrate the properties of the modified method.
Related Articles:
A New Iterative Solution Method for Solving Multiple Linear Systems
Saeed Karimi
DOI: 10.4236/alamt.2012.23004 5,279 Downloads 15,696 Views Citations
Pub. Date: September 24, 2012
Gauss-Legendre Iterative Methods and Their Applications on Nonlinear Systems and BVP-ODEs
Zhongli Liu, Guoqing Sun
DOI: 10.4236/jamp.2016.411203 1,233 Downloads 1,735 Views Citations
Pub. Date: November 18, 2016
Combining Methods of Lyapunov for Exponential Stability of Linear Dynamic Systems on Time Scales
Nguyen Ngoc Huy, Dang Dinh Chau
DOI: 10.4236/am.2014.521323 3,759 Downloads 4,229 Views Citations
Pub. Date: December 11, 2014
Comparison of Iterative Wavefront Estimation Methods
Y. Pankratova, A. Larichev, N. Iroshnikov
DOI: 10.4236/opj.2013.32B022 3,679 Downloads 4,845 Views Citations
Pub. Date: July 18, 2013
An Improved Wavelet Based Preconditioner for Sparse Linear Problems
Arikera Padmanabha Reddy, Nagendrapp M. Bujurke
DOI: 10.4236/am.2010.15049 3,643 Downloads 7,226 Views Citations
Pub. Date: November 30, 2010