Scientific Research An Academic Publisher
OPEN ACCESS
Add your e-mail address to receive free newsletters from SCIRP.
Select Journal AA AAD AAR AASoci AAST ABB ABC ABCR ACES ACS ACT AD ADR AE AER AHS AID AiM AIT AJAC AJC AJCC AJCM AJIBM AJMB AJOR AJPS ALAMT ALC ALS AM AMI AMPC ANP APD APE APM ARS ARSci AS ASM BLR CC CE CellBio ChnStd CM CMB CN CRCM CS CSTA CUS CWEEE Detection EMAE ENG EPE ETSN FMAR FNS GEP GIS GM Graphene GSC Health IB ICA IIM IJAA IJAMSC IJCCE IJCM IJCNS IJG IJIDS IJIS IJMNTA IJMPCERO IJNM IJOC IJOHNS InfraMatics JACEN JAMP JASMI JBBS JBCPR JBiSE JBM JBNB JBPC JCC JCDSA JCPT JCT JDAIP JDM JEAS JECTC JEMAA JEP JFCMV JFRM JGIS JHEPGC JHRSS JIBTVA JILSA JIS JMF JMGBND JMMCE JMP JPEE JQIS JSBS JSEA JSEMAT JSIP JSS JSSM JST JTR JTST JTTs JWARP LCE MC ME MI MME MNSMS MPS MR MRC MRI MSA MSCE NJGC NM NR NS OALib OALibJ ODEM OJA OJAB OJAcct OJAnes OJAP OJApo OJAppS OJAPr OJAS OJBD OJBIPHY OJBM OJC OJCB OJCD OJCE OJCM OJD OJDer OJDM OJE OJEE OJEM OJEMD OJEpi OJER OJF OJFD OJG OJGas OJGen OJI OJIC OJIM OJINM OJL OJM OJMC OJMetal OJMH OJMI OJMIP OJML OJMM OJMN OJMP OJMS OJMSi OJN OJNeph OJO OJOG OJOGas OJOp OJOph OJOPM OJOTS OJPathology OJPC OJPChem OJPed OJPM OJPP OJPS OJPsych OJRA OJRad OJRD OJRM OJS OJSS OJSST OJST OJSTA OJTR OJTS OJU OJVM OPJ POS PP PST PSYCH SAR SCD SGRE SM SN SNL Soft SS TEL TI UOAJ VP WET WJA WJCD WJCMP WJCS WJET WJM WJNS WJNSE WJNST WJV WSN YM
More>>
Golub, G., Nash, S. and Van Loan, Ch. (1979) A Hessenberg-Schur Method for the Problem AX+XB=C. IEEE Transactions on Automatic Control, 24, 909-913. http://dx.doi.org/10.1109/TAC.1979.1102170
has been cited by the following article:
TITLE: A New Approximation to the Linear Matrix Equation AX = B by Modification of He’s Homotopy Perturbation Method
AUTHORS: Amir Sadeghi
KEYWORDS: Matrix Equation, Homotopy Perturbation Method, Convergence, Diagonally Dominant Matrix, Regular Splitting
JOURNAL NAME: Advances in Linear Algebra & Matrix Theory, Vol.6 No.2, May 26, 2016
ABSTRACT: It is well known that the matrix equations play a significant role in engineering and applicable sciences. In this research article, a new modification of the homotopy perturbation method (HPM) will be proposed to obtain the approximated solution of the matrix equation in the form AX = B. Moreover, the conditions are deduced to check the convergence of the homotopy series. Numerical implementations are adapted to illustrate the properties of the modified method.
Related Articles:
Clarifications for the Published Article: “A Solution to the Famous Twin’s Problem” in the APM of SCIRP at 24 September of 2019
Prodromos Char. Papadopoulos
DOI: 10.4236/apm.2020.109035 76 Downloads 304 Views Citations
Pub. Date: September 29, 2020
Analytical Solution of Van Der Pol’s Differential Equation Using Homotopy Perturbation Method
Md. Mamun-Ur-Rashid Khan
DOI: 10.4236/jamp.2019.71001 631 Downloads 1,021 Views Citations
Pub. Date: January 7, 2019
A Logarithmic Finite Difference Method for Troesch’s Problem
M. S. Ismail, K. S. Al-Basyoni
DOI: 10.4236/am.2018.95039 642 Downloads 1,079 Views Citations
Pub. Date: May 30, 2018
A Comparative Study of Analytical Solutions to the Coupled Van-der-Pol’s Non-linear Circuits Using the He’s Method (HPEM) and (BPES)
Hüseyin Koçak, Ahmet Yıldırım, Dahong Zhang, Karem Boubaker, Syed Tauseef Mohyud-Din
DOI: 10.4236/cs.2011.23028 5,266 Downloads 9,284 Views Citations
Pub. Date: July 29, 2011
Automatic Modeling of Fault Tree for NuIEEE Transactions on Power Electronics,Clear Power Safety I&C Configuration
Shan Leng, Bo Zhang, Wei Sun, Zhiwu Guo, Yichen Hao
DOI: 10.4236/epe.2013.54B052 4,625 Downloads 5,487 Views Citations
Pub. Date: October 15, 2013