Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Jamieson, K. (2002) Implementation of a Power-Saving Protocol for Ad Hoc Wireless networks. Master’s Thesis, Massachusetts Institute of Technology, Cambridge.

has been cited by the following article:

  • TITLE: Hybrid Energy-Efficient Transmission Protocol for Heterogeneous Wireless Sensor Networks

    AUTHORS: Ramaswami Jothi Kavitha, Britto Elizabeth Caroline

    KEYWORDS: Heterogeneous WSN, Border Cluster, FND, PNA

    JOURNAL NAME: Circuits and Systems, Vol.7 No.6, May 18, 2016

    ABSTRACT: Heterogeneous Wireless Sensor Networks (WSNs) have different sensing ranges and computing power in the midst of various resource constraints such as limited battery power, reduced transmit power and network potential. This paper proposes new hybrid energy efficient transmission protocol called Hybrid Transmission Protocol (HTP). The proposed algorithm focuses on the issues of throughput dreadful conditions and limited power on mobile nodes due to conflicts in multi-cell wireless networks. The design principle of the proposed routing algorithm is to introduce a new border cluster between the sink nodes and the cluster-heads in order to lengthen the lifetime of the network nodes with minimized energy consumption to attain energy efficiency. The creation of clusters is done by making use of the sensor nodes formation that has a Cluster-Head (CH) used for performing the data aggregation in the sensor nodes of the cluster. Later the data that is aggregated is transmitted with multiple hops to the base station and in turn, this process leads to the reduction in the bandwidth through the elimination of the redundant data present in a cluster. The performance results indicate that the HTP proposed gained greater network lifetime, better performance and higher throughput compared to the other available algorithms.