SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Gehlin, S. (2002) Thermal Response Test: Method Development and Evaluation. Doctoral Thesis, Luleå University of Technology, Luleåtekniskauniversitet, Luleå.

has been cited by the following article:

  • TITLE: Possibilities of Reducing Energy Consumption by Optimization of Ground Source Heat Pump Systems in Babylon, Iraq

    AUTHORS: Jenny Lindblom, Nadhir Al-Ansari, Qais Al-Madhlom

    KEYWORDS: Ground Source Heat Pump, Seasonal Thermal Energy Storages, Energy Saving, Babylon, Iraq

    JOURNAL NAME: Engineering, Vol.8 No.3, March 28, 2016

    ABSTRACT: Iraq is located in the Middle East with an area that reaches 437,072 km2 and a population of about 36 million. This country is suffering from severe electricity shortage problems which are expected to increase with time. In this research, an attempt is made to minimize this problem by combining the borehole thermal energy storage (BTES) with a heat pump, the indoor temperature of a residential building or other facility may be increased or reduced beyond the temperature interval of the heat carrier fluid. Due to the relatively high ground temperature in Middle Eastern countries, the seasonal thermal energy storages (STES) and ground source heat pump (GSHP) systems have a remarkable potential, partly because the reduced thermal losses from the underground storage and the expected high COP (ratio of thermal energy gain to required driving energy (electricity)) of a heat pump, partly because of the potential for using STES directly for heating and cooling. In this research, groundwater conditions of Babylon city in Iraq were investigated to evaluate the possibility of using GSHP to reduce energy consumption. It is believed that such system will reduce consumed energy by about 60%.