Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Hasan, M.M., Islam, M.R. and Khan, M.A. (2003) Improvement of Physico-Mechanical Properties of Jute Yarn by Photografting with 3-(Trimethoxysilyl) Propylmethacrylate. Journal of Adhesion Science and Technology, 17, 737-750.

has been cited by the following article:

  • TITLE: Fabrication of Cellulose Based Reinforced Linear Low Density Polyethylene with Polyethylene Terephthalate Composite: Effect of Acacia catechu as Coupling Agent

    AUTHORS: Lily R. Das, Mohammad Zahirul I. Mollah, Jahid M. M. Islam, Shireen Akhter, Farid Ahmed, Mubarak Ahmad Khan

    KEYWORDS: Jute, Cellulose, Composite, Acacia catechu, Properties

    JOURNAL NAME: Materials Sciences and Applications, Vol.6 No.11, November 18, 2015

    ABSTRACT: Biodegradable reinforced composites are playing a vital role in the variety of application for their outstanding performance. Linear Low Density Polyethylene (LLDPE) and Polyethylene Tere-phthalate (PET) blends were prepared by twin screw extruder in different composition. The mechanical properties in 10% PET with LLDPE blend showed the best results where as tensile strength (TS) 9 MPa and percentage elongation at break (%Eb) 33. Cellulose based reinforced PET + LLDPE composite were prepared by compression molding with the optimized jute content 62% that revealed the highest mechanical properties. Cellulose based composites treated with Acacia catechu (AC) solutions (0.1% - 5% w/v) at different soaking time (2 - 20 min.) where observed significant improvement of the mechanical properties. Cellulose treated with 0.1% AC for 2 minutes soaking time depicted the highest mechanical properties and TS is 115% higher than untreated. Composite prepared with 0.1% AC treated showed the best mechanical properties as tensile strength (TS), bending strength (BS), tensile modulus (TM) and bending modulus (BM) were to be 47 MPa, 39 MPa, 1220 MPa and 1784 MPa respectively. The properties of TS, BS, TM and BM were improved as 9%, 30%, 14% and 34% respectively, which were better to untreated composite. Electrical properties such as dielectric constant and loss of the treated and untreated composites were found to be higher dielectric constant of treated jute composite than that of untreated samples. Water uptake and soil degradation of untreated and treated composites performed in significant study. The effect of AC with cellulose composites has found in remarkable changes in the mechanical properties.