Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Dong, S., Sapieha, S. and Schreiber, H.P. (1992) Rheological Properties of Corona Modified Cellulose/Polyethylene Composites. Polymer Engineering & Science, 32, 1734-1739.
http://dx.doi.org/10.1002/pen.760322212

has been cited by the following article:

  • TITLE: Surface Treatments of Natural Fibres—A Review: Part 1

    AUTHORS: Kayode Feyisetan Adekunle

    KEYWORDS: Natural Fibres, Chemical Modification, Mechanical Properties, Debonding

    JOURNAL NAME: Open Journal of Polymer Chemistry, Vol.5 No.3, August 6, 2015

    ABSTRACT: This review is based on the surface treatment of natural fibres which can be used in technical applications. Natural fibres on their own have some draw backs regarding moisture uptake, quality variations, low thermal stability, and poor wettability. Insufficient adhesion between polymer matrix and fibre leads in time to debonding. Overcoming the weaknesses of these natural fibres gave the motivation for this study where physical and chemical methods of modification were considered. Physical methods such as electric discharge and mercerization were reported as well as the chemical methods such as graft copolymerization and treatment with isocyanates, and the results due to these modifications were discussed. This study reveals that natural fibres are good candidates for reinforcement but they have to be suitably treated to improve their properties if they are to be used in technical applications. The various fibre surface treatments actually improve the interfacial adhesion between the fibre surface and the matrix, thereby giving good mechanical properties to the resulted polymer composites.