Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Schreiber, A.K., Nones, C.F.M., Reis, R.C., Chichorro, J.G. and Cunha, J.M. (2015) Diabetic Neuropathic Pain: Physiopathology and Treatment. World Journal of Diabetes, 6, 432-444.

has been cited by the following article:

  • TITLE: Molecular Analysis of Clerodendrum formicarum Effects in Painful Diabetic Neuropathy in Rat

    AUTHORS: Ghislain Loubano-Voumbi, Mor Diaw, Valentin Ouedraogo, Abdou Khadir Sow, Aïssatou Seck, Luc Magloire Anicet Boumba, Abdoulaye Ba, Abdoulaye Samb

    KEYWORDS: Clerodendrum formicarum, Astrocytes, Microglial Cells, Diabetic Neuropathy Pain, Cyclooxygenase

    JOURNAL NAME: World Journal of Neuroscience, Vol.5 No.4, July 27, 2015

    ABSTRACT: The pathophysiology of diabetic neuropathic pain is due to primarily metabolic and vascular factors. There is an increase in sorbitol and fructose, glycated end products, reactive oxygen species and activation of protein kinase C in the diabetic state. All these factors lead to direct damage to the nerves. Taking effective clinical management of neuropathic pain is based on a pharmacological treatment that has shown their limits and many side effects. The hypothesis of central sensitization inhibited by Clerodendrum formicarum, an African pharmacopoeia plant used to treat headaches, arthritis, epilepsy and chronic pain could act on astrocytes and microglial cells. The objective of this work is to study the effect of Clerodendrum formicarum (100, 150 and 200 mg/kg body weight) on astrocytes and microglial cells in a model of diabetic neuropathic pain induced by alloxan monohydrate (150 mg/kg). We noted a suppression of mechanical allodynia and mechanical hyperalgesia respectively by the Von Frey filaments test and the pressure test on the paw by the Clerodendrum formicarumextracts (ECF) at different doses from 2 h at the first injection of the ECF. After 5 days of treatment, we expressed by Western Blot bands of different proteins and by quantitative RT-PCR, we determined inhibition of the expression of GFAP, CD11b and isoforms 1 and 2 of cyclooxygenase. These results suggest that ECF inhibits the activation of astrocytes, microglial cells and cyclooxygenase signaling pathway.